Skip to main content
Log in

What types of powdery mildew can infect wheat-barley introgression lines?

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This work is a detailed study of the infection of fungal biotrophic pathogens causing powdery mildew diseases on introgression lines originating from the intergeneric hybridisation between wheat and barley (Triticum aestivum L. × Hordeum vulgare L.). Powdery mildew fungi are among the most widespread biotrophic pathogens of plants also and infect dicot and monocot species. Most powdery mildew species are strictly host specific. They colonize only a narrow range of species or one particular host species. The intergeneric hybridisation between wheat and barley could result in expansions of host ranges of the barley powdery mildew. Our experiments covered natural infections in the field and artificial infections under greenhouse conditions. Formae speciales of powdery mildew were identified on the basis of the sequencing results of ribosomal internal transcribed spacer sequences (rDNA-ITS). We identified Blumeria graminis f.sp. tritici isolate 14 (HM484334) on the wheat parent and all wheat-barley introgression lines and B. g. f. sp. hordei isolate MUMH1723 (AB 273556) on the barley parent, respectively. The wheat-barley introgression lines were inoculated with barley powdery mildew under greenhouse conditions. According to our results the added barley chromosomes (or segments) do not cause host range expansion of barley powdery mildew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2011). GenBank. Nucleic Acids Research, 39, 32–37.

    Article  CAS  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • El-Zahaby, H. M., Gullner, G., & Király, Z. (1995). Effects of powdery mildew infection of barley on the ascorbate- glutathione cycle and other antioxidants in different host- pathogen interactions. Biochemistry and Cell Biology, 85, 1225–1230.

    CAS  Google Scholar 

  • Giraud, T., Gladieux, P., & Gavrilets, S. (2010). Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecology and Evolution, 25, 387–395.

    Article  Google Scholar 

  • Hoffmann, B. (2008). Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Research Communications, 36(2), 269–278.

    Article  Google Scholar 

  • Hoffmann, B., Aranyi, N., & Molnár-Láng, M. (2011). Root development and drought tolerance of wheat-barley introgression lines. Acta Biologica Szegediensis, 55(1), 81–82.

    Google Scholar 

  • Inuma, T., Khodaparast, S. A., & Takamatsu, S. (2007). Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals. Molecular Phylogenetics and Evolution, 44, 741–751.

    Article  PubMed  CAS  Google Scholar 

  • Islam, A. K. M. R., Shepherd, K. W. (1992). Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. 1. Isolation of recombinants involving barley arms 3HL and 6HL. Theor Appl Genet, 83, 489–49.

    Google Scholar 

  • Klocke, B., Flath, K., & Miedaner, T. (2013). Virulence phenotypes in powdery mildew (Blumeria graminis) populations and resistance genes in triticale (x Triticosecale). European Journal of Plant Pathology, 137(3), 463–476.

    Article  Google Scholar 

  • Koba, T., Takumi, S., & Shimada, T. (1997). Isolation, identification and characterization of disomic and translocated barley chromosome addition lines of common wheat. Euphytica, 96, 289–296.

    Google Scholar 

  • Koetschan, C., Förster, F., Keller, A., Schleicher, T., Ruderisch, B., Schwarz, R., Müller, T., Wolf, M., & Schultz, J. (2010). The ITS2 Database III – sequences and strucutres for phylogeny. Nucleic Acids Research, 38, 275–279.

    Article  CAS  Google Scholar 

  • Kőszegi, B., Linc, G., Juhász, A., Láng, L., & Molnár-Láng, M. (2000). Occurence of the 1RS/1BL wheat-rye translocation in Hungarian wheat varieties. Acta Agronomica Hungarca, 48, 227–236.

    Article  Google Scholar 

  • Kruse, A. (1973). Hordeum - Triticum hybrids. Hereditas, 73, 157–161.

  • Molnár, I., Linc, G., Dulai, S. D., Nagy, E., & Molnár-Láng, M. (2007). Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheat-barley 4H(4D) disomic substitution. Plant Breeding, 126, 369–374.

    Article  CAS  Google Scholar 

  • Molnár-Láng, M., Kruppa, K., Cseh, A., Bucsi, J., & Linc, G. (2012). Identification and phenotypic description of new wheat- six-rowed winter barley disomic additions. Genome, 55(4), 302–311.

    Article  PubMed  CAS  Google Scholar 

  • Molnár-Láng, M., Linc, G., Friebe, R. B., & Sutka, J. (2000a). Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica, 112(2), 117–123.

    Article  Google Scholar 

  • Molnár-Láng, M., Linc, G., Logojan, A., & Sutka, J. (2000b). Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome, 43, 1045–1054.

    Article  PubMed  Google Scholar 

  • Molnár-Láng, M., Linc, G., & Sutka, J. (1996). Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica, 90, 301–305.

    Article  Google Scholar 

  • Saari, E. E., & Prescott, J. M. (1975). A scale for appraising the foliar intensity of wheat disease. Plant Diseases Reporter, 59, 377–380.

    Google Scholar 

  • Schulze-Lefert, P., & Panstruga, R. (2011). A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends in Plant Science, 16, 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R. P., Huerta-Espino, J., Rajaram, S., & Crossa, J. (1998). Agronomic effects from chromosome translocations 1BL.1RS in spring wheat. Crop Science, 38, 27–33.

    Article  Google Scholar 

  • Szakács, É., & Molnár-Láng, M. (2007). Development and molecular cytogenetic identification of new winter wheat/winter barley (Martonvásári 9 kr1/Igri) disomic addition lines. Genome, 50, 43–50.

    Article  PubMed  Google Scholar 

  • Szakács, É., & Molnár-Láng, M. (2010). Identification of new winter wheat - winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and stability of the whole ‘Martonvásári 9 krl’ - ‘Igri’ addition set. Genome, 53(1), 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Troch, V., Audenaert, K., Bekaert, B., Höfte, M., & Haesaert, G. (2012). Phylogeography and virulence structure of the powdery mildew population on its ‘new’ host triticale. BMC Evolutionary Biology, 12, 76.

    Article  PubMed Central  PubMed  Google Scholar 

  • Walker, A. S., Bouguennec, A., Confais, J., Morgant, G., & Leroux, P. (2011). Evidence of host-range expansion from new powdery mildew (Blumeria graminis) infections of triticale (× Triticosecale) in France. Plant Pathology, 60, 207–220.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., & Lee, S. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, H. D. Gelfand, & J. J. Sninsky (Eds.), PCR protocol: a guide to methods and applications (pp. 315–322). USA: Academic Press.

    Google Scholar 

  • Wiberg, A. (1974). Sources of resistance to powdery mildew in barley. Hereditas, 78, 1–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present publication was realized with the support of the project TÁMOP 4.2.4.A/2-11-1-2012- 0001 and TÁMOP -4.2.2. A-11/1 KONV-2012-0064. The project was realized with the support of the Hungarian Government and the European Union, with the co-funding of the European Social Fund. István Cernák is supported by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences. Barley powdery mildew isolates were kindly provided by Dr. Balázs Barna, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borbála Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranyi, N.R., Varga, I., Poczai, P. et al. What types of powdery mildew can infect wheat-barley introgression lines?. Eur J Plant Pathol 139, 19–25 (2014). https://doi.org/10.1007/s10658-014-0382-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0382-0

Keywords

Navigation