Skip to main content
Log in

Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This study tested the effectiveness of single and combined applications of Trichoderma and rhizobacterial strains to control white root rot (WRR) caused by Rosellinia necatrix in avocado plants. Three Trichoderma, two T. atroviride and one T. virens monoconidal strains and four bacterial strains (Bacillus subtilis, Pseudomonas pseudoalcaligenes and two P. chlororaphis) were assayed to determine their compatibilities in vitro. In addition, the effects of the bacterial filtrates were evaluated against the Trichoderma strains and reciprocally; these filtrates were applied alone or in combination to determine their effectiveness against R. necatrix. Individual control agents or combinations of them were applied to avocado plants that were artificially inoculated with a virulent R. necatrix strain. Compatibility between the combined Trichoderma applications and the bacterial strains was observed and these combinations significantly improved the control of R. necatrix during the in vitro experiments. A relative protective effect of some Trichoderma and bacteria was observed on the control of avocado WRR when they were applied singly. The combinations of T. atroviride strains with bacterial strains P. chlororaphis and P. pseudoalcaligenes showed a better control of avocado WRR, whereas the rest of Trichoderma and bacteria combinations also reduced significantly the level of disease and induced a delay at the onset of disease with respect to avocado plants inoculated either with Trichoderma or bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeysinghe, S. (2009). Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RU01 on biological control of Rhizoctonia solani on Solanum melongena and Capsicum annuum. Plant Pathology Journal, 8, 9–16.

    Article  Google Scholar 

  • Baker, R. (1990). An overview of current and future strategies and model of biological control. In D. Hornby (Ed.), Biological Control of Soil-borne Plant Pathogens (pp. 375–388). UK: CAB International.

    Google Scholar 

  • Calderón, C. E., Pérez-García, A., de Vicente, A., & Cazorla, F. M. (2013). The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-Hexyl, 5-propyl resorcinol. Molecular Plant-Microbe Interactions, 26, 554–565.

    Article  PubMed  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Temporal analysis of epidemics. I: descriptions and comparisons of disease progress curve. In C. L. Campbell & L. V. Madden (Eds.), Introduction to Plant Disease Epidemiology (pp. 161–202). New York: Wiley.

    Google Scholar 

  • Cazorla, F. M., Duckett, S. B., Bergström, E. T., Noreen, S., Odijk, R., Lugtenberg, B. J. J., et al. (2006). Biocontrol of avocado Dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606l correlates with the production of 2-hexyl, 5-propyl resorcinol. Molecular Plant-Microbe Interactions, 19, 418–428.

    Article  CAS  PubMed  Google Scholar 

  • Cazorla, F. M., Romero, D., Pérez-García, A., Lugtenberg, B. J. J., De Vicente, A., & Bloemberg, G. V. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane, displaying biocontrol activity. Journal of Applied Microbiology, 103, 1950–1959.

    Article  CAS  PubMed  Google Scholar 

  • Deacon, J. W. (1994). Rhizosphere constraints affecting biocontrol organisms applied to seeds. In T. Martin (Ed.), Seed Treatment: Progress and Prospects Monograph nº57 (pp. 315–326). UK: BCPC Surrey.

    Google Scholar 

  • Freeman, S., Sztejnberg, A., & Chet, I. (1986). Evaluation of Trichoderma as a biocontrol agent for Rosellinia necatrix. Plant and Soil, 94, 163–170.

    Article  Google Scholar 

  • González-Sánchez, M. A., Pérez Jiménez, R. M., Pliego, C., Ramos, C., De Vicente, A., & Cazorla, F. M. (2010). Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. Journal of Applied Microbiology, 109, 65–78.

    PubMed  Google Scholar 

  • Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E., & Dinoor, A. (2002). Improving biological control by combining biocontrol agents each with several mechanism of diseased suppression. Phytopathology, 92, 976–985.

    Article  PubMed  Google Scholar 

  • Harman, G. E., & Kubicek, C. P. (1998). Trichoderma and Gliocladium Volume 2: Enzymes, Biological Control and commercial applications. UK: Taylor and Francis.

    Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-oportunistic, avirulent plant symbionts. Nature Review of Microbiology, 2, 43–56.

    Article  CAS  Google Scholar 

  • Janisiewicz, W. (1996). Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology, 86, 473–479.

    Article  Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44, 301–307.

    CAS  PubMed  Google Scholar 

  • Kloepper, J. W. (1991). Development in vitro assays for pre-screening antagonists of Rhizoctonia solani in cotton. Phytopathology, 81, 1006–1013.

    Article  Google Scholar 

  • Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus. Phytopathology, 94, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen, G. R., Eschen, D. J., Dandurand, L. M., & Bin, L. (1991). Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Disease, 75, 466–470.

    Article  Google Scholar 

  • López-Herrera, C. J. (1998). Hongos de suelo en el cultivo del aguacate (Persea americana Mill.) del litoral andaluz. In Consejería de Agricultura y Pesca (Ed.), V Jornadas andaluzas de frutos tropicales, Congresos y Jornadas 47/98. (pp. 139-152). Spain: Junta de Andalucía.

  • López-Herrera, C. J., & Zea Bonilla, T. (2007). Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Protection, 26, 1186–1192.

    Article  Google Scholar 

  • López-Herrera, C. J., Pérez Jiménez, R. M., Basallote Ureba, M. J., Zea Bonilla, T., & Melero Vara, J. M. (1998). Soil solarisation in established avocado trees for Dematophora necatrix. Plant Disease, 82, 1088–1092.

    Article  Google Scholar 

  • López-Herrera, C. J., Pérez Jiménez, R. M., Basallote Ureba, M. J., Zea Bonilla, T., & Melero Vara, J. M. (1999). Loss of viability of Dematophora necatrix in solarized soils. European Journal of Plant Pathology, 105, 571–576.

    Article  Google Scholar 

  • Lugtenberg, B. J. J., & Kamilova, F. (2009). Plant-Growth promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza García, R. A., Ten Hoopen, G. M., Kass, D. C. J., Sánchez Garita, V. A., & Krauss, U. (2003). Evaluation of mycoparasites as biocontrol agents of Rosellinia root rot in cocoa. Biological Control, 27, 210–227.

    Article  Google Scholar 

  • Meyer, S. L. F., & Roberts, D. P. (2002). Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. Journal of Nematology, 34, 1–8.

    PubMed Central  PubMed  Google Scholar 

  • Okon, Y., Heti, C., & Henis, Y. (1973). Effect of lactose, ethanol and cycloheximide on translocation pattern of radioactive compounds and sclerotium formation in Sclerotium rolfsii. Journal of General Microbiology, 74, 251–258.

    Article  CAS  Google Scholar 

  • Pliego, C., Cazorla, F. M., González Sánchez, M. A., Pérez Jiménez, R. M., De Vicente, A., & Ramos, C. (2007). Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Research in Microbiology, 158, 463–470.

    Article  CAS  PubMed  Google Scholar 

  • Pliego, C., De Weert, S., Lamers, G., De Vicente, A., Bloemberg, G., Cazorla, F. M., et al. (2008). Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Environmental Microbiology, 10, 3295–3304.

    Article  PubMed  Google Scholar 

  • Pliego, C., Ramos, C., De Vicente, A., & Cazorla, F. M. (2011). Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant and Soil, 340, 505–520.

    Article  CAS  Google Scholar 

  • Pliego, C., López-Herrera, C., Ramos, C., & Cazorla, F. (2012). Developing tools to unravel the biological secrets of Rosellinia necatrix, an emergent threat to woody crops. Molecular Plant Pathology, 13, 226–239.

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers, J. M., Vlami, M., & De Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek, 81, 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88, 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  • Romero, D., De Vicente, A., Rakotoaly, R. V., Dufour, S. E., Veening, J. W., Arrebola, E., et al. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Molecular Plant-Microbe Interactions, 20, 430–440.

    Article  CAS  PubMed  Google Scholar 

  • Royse, D. J., & Ries, S. M. (1978). The influence of soil fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology, 68, 603–607.

    Article  Google Scholar 

  • Ruano-Rosa, D., & López-Herrera, C. J. (2009). Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control, 51, 66–71.

    Article  Google Scholar 

  • Ruano-Rosa D., Del Moral-Navarrete L., & López-Herrera C. J. (2003a). Study of in vitro growth temperatures of Trichoderma spp. and Rosellinia necatrix. Evaluation of antagonism through dual cultures. In Consejería de Agricultura y Pesca, Junta de Andalucía (Ed.), Proceedings of V World Avocado Congress, October 19–24, 2003, Torremolinos, Malaga, Spain, pp. 525–529.

  • Ruano-Rosa D., Del Moral-Navarrete L., & López-Herrera C. J. (2003b). Experiments of biological control of avocado White Root Rot. In Consejería de Agricultura y Pesca, Junta de Andalucía (Ed.), Proceedings of V World Avocado Congress, October 19-24, 2003, Torremolinos, Malaga, Spain, pp. 519–523.

  • Ruano-Rosa, D., Del Moral-Navarrete, L., & López-Herrera, C. J. (2010). Selection of Trichoderma spp. isolates antagonistic to Rosellinia necatrix. Spanish Journal of Agricultural Research, 8, 1084–1097.

    Article  Google Scholar 

  • Sallam, N., Abd Elrazik, A. A., Hassan, M., & Koch, E. (2009). Powder formulations of Bacillus subtilis, Trichoderma spp and Coniothyrium minitans for biocontrol of Onion White Rot. Archives of Phytopathology and Plant Protection, 42, 142–147.

    Article  CAS  Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1985). Bioestadística: Principios y Procedimientos. México: McGraw-Hill.

    Google Scholar 

  • Sztejnberg, A., & Madar, Z. (1980). Host range of Dematophora necatrix, the cause of white root rot disease in fruit trees. Plant Disease, 64, 662–664.

    Article  Google Scholar 

  • Ten Hoopen, G. M., & Krauss, U. (2006). Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: a review. Crop Protection, 25, 89–107.

    Article  Google Scholar 

  • Vinale, F., Arjona-Girona, I., Nigro, M., Mazzei, P., Piccolo, A., Ruocco, M., et al. (2012). Cerinolactone, a hydroxy-lactone derivate from Trichoderma cerinum. Journal of Natural Products, 75, 103–106.

    Article  CAS  PubMed  Google Scholar 

  • Walker, R., Rossall, S., & Asher, M. J. C. (2002). Colonization of the developing rhizosphere of sugar beet seedlings by potential biocontrol agent applied as seed treatments. Journal of Applied Microbiology, 92, 228–237.

    Article  PubMed  Google Scholar 

  • Woo, S., Fogliano, V., Scala, F., & Lorito, M. (2002). Synergism between fungal enzymes and bacterial antibiotics may enhance biocontrol. Antonie Van Leeuwenhoek, 81, 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X. M., Jeffries, P., Pautasso, M., & Jeger, M. J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology, 101, 1024–1030.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the “Consejería de Innovación Ciencia y Empresa”-Junta de Andalucía grant (Grupos PAIDI AGR-169, AGR-235) and by the Plan Nacional I+D+I from Ministerio de Ciencia e Innovación (AGL 2008-05453-C02-01, AGL 2008-05453-C02-02, AGL 2011-030354-CO2-01 and AGL 2011-030354-CO2-02). In addition, this research was co-financed by FEDER funds (EU). The authors acknowledge the support of Dr. Araceli Barceló and the “Instituto de Investigación y Formación Agraria y Pesquera” (IFAPA)-Churriana facilities (Junta de Andalucía, Málaga).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. López-Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruano-Rosa, D., Cazorla, F.M., Bonilla, N. et al. Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur J Plant Pathol 138, 751–762 (2014). https://doi.org/10.1007/s10658-013-0347-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0347-8

Keywords

Navigation