Skip to main content
Log in

Improved PCR for identification of members of the genus Xanthomonas

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A PCR-based system was developed to reliably and robustly identify group I and II members of the genus Xanthomonas. Primer sets developed from three gene targets namely fyuA, ITS and gumD were evaluated in the study. Primer sets were evaluated using DNA extracted from 45 Xanthomonas strains representing 25 species broadly covering the genus. Fifteen non-Xanthomonas strains of plant-associated bacteria including phylogenetically closely related species Stenotrophomonas maltophilia and Xylella fastidiosa were also tested. The primers targeting fyuA amplified DNA from all xanthomonads except X. theicola, while the ITS primers amplified a DNA fragment of 254 bp in all 45 Xanthomonas strains; whereas no amplification was observed for non-xanthomonads. The gumD primers allowed efficient amplification of DNA in 38 out of 39 isolates from Group II, whereas no or very weak amplification occurred with DNA from Group I members. Internal controls of primers targeting bacterial 16S rDNA or plant 26S mitochondrial rDNA were successfully applied in multiplex PCRs for testing bacterial cultures or plant tissue, respectively. The findings give us a PCR based approach that can reliably and effectively differentiate xanthomonads from non-xanthomonads as well as separating the strains belonging to the two described groups of the genus Xanthomonas. The study thus offers valuable tools for disease surveillance and management. It can effectively be applied in rapid assessment of new disease occurrences, for which no specific detection tools could be in place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriko, J., Aritua, V., Mortensen, C. N., Tushemereirwe, W. K., Kubiriba, J., & Lund, O. S. (2012). Multiplex PCR for specific and robust detection of Xanthomonas campestris pv. musacearum in pure culture and infected plant material. Plant Pathology, 61, 489–497.

    Article  CAS  Google Scholar 

  • Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., et al. (2010). PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100, 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews, 59, 143–169.

    CAS  Google Scholar 

  • Aslam, N. S., Newman, M.-A., Erbs, G., Morrissey, L. K., Chincilla, D., Boller, T., et al. (2008). Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Current Biology, 18, 1078–1083.

    Article  CAS  PubMed  Google Scholar 

  • Berg, T., Tesoriero, L., & Hailstones, D. L. (2005). PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathology, 54, 416–427.

    Article  CAS  Google Scholar 

  • Bradbury, J. F. (1986). Xanthomonas Dowson 1939 (pp. 198–260). Slough: CAB International Mycological Institute.

    Google Scholar 

  • Chou, F. L., Chou, H. C., Lin, Y. S., Yang, B. Y., Lin, N. T., Weng, S. F., et al. (1997). The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochemical and Biophysical Research Communications, 233, 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Chun, W., Cui, J., & Poplawsky, A. R. (1997). Purification, characterization and biological role of a pheromone produced by Xanthomonas campestris pv. campestris. Physiological and Molecular Plant Pathology, 51, 1–14.

    Article  CAS  Google Scholar 

  • Dow, J. M., Daniels, M. J. (1994) Pathogenicity determinants and global regulation of pathogenicity in Xanthomonas campestris pv. campestris (pp. 29–41). Springer, Berlin, Germany.

  • Dunger, G., Relling, V. M., Tondo, L. M., Barreras, M., Ielpi, L., Orellano, G. E., et al. (2007). Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. Microbiology, 188, 127–135.

    CAS  Google Scholar 

  • Finkmann, W., Alterndorf, K., Stackebrandt, E., & Lipski, A. (2000). Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. Nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 273–282.

    Article  CAS  PubMed  Google Scholar 

  • Glick, D. L., Coffey, C. M., & Sulzinski, M. A. (2002). Simultaneous PCR detection of the two major bacterial pathogens of Geranium. Journal of Phytopathology, 150, 54–59.

    Article  CAS  Google Scholar 

  • Gurtler, V., & Stanisich, V. A. (1996). New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology, 142, 3–16.

    Article  PubMed  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hauben, L., Vauterin, L., Swings, J., & Moore, E. R. B. (1997). Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. International Journal of Systematic Bacteriology, 47, 328–335.

    Article  CAS  PubMed  Google Scholar 

  • Hayward, A. C. (1993). The hosts of Xanthomonas (pp. 1–199). United Kingdom: Chapman and Hall, London.

    Google Scholar 

  • Hayward, A. C., Fegan, N., Fegan, M., & Stirling, G. R. (2010). Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. Journal of Applied Microbiology, 108, 756–770.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, C. L., & Starr, M. P. (1982). The brominated aryl-polyene (xanthomonadin) pigments of Xanthomonas juglandis protect against photobiological damage. Current Microbiology, 7, 323–326.

    Article  CAS  Google Scholar 

  • Katzen, F., Becker, A., Zorreguieta, A., Puhler, A., & Ielpi, L. (1996). Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. Journal of Bacteriology, 178, 4313–4318.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katzen, F., Ferreiro, D., Oddo, C., Ielmini, M. V., Becker, A., Puhler, A., et al. (1998). Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. Journal of Bacteriology, 180, 1607–1617.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, S.-Y., Kim, J.-G., Lee, B.-M., & Cho, J.-Y. (2009). Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv. oryzae. Biotechnology Letters, 31, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Koebnik, R. (2005). TonB-dependent trans-envelope signalling: the exception or the rule? Trends in Microbiology, 13, 343–347.

    Article  CAS  PubMed  Google Scholar 

  • Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., & Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences, 82, 6955–6959.

    Article  CAS  Google Scholar 

  • Lee, Y.-A., Sung, A.-N., Liu, T.-F., & Lee, Y.-S. (2009). Combination of chromogenic differential medium and estA-specific PCR for isolation and detection of phytopathogenic Xanthomonas spp. Applied and Environmental Microbiology, 75, 6831–6838.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leite, P. R., Jr., Minsavage, V. G., Bonas, U., & Stall, E. R. (1994). Detection and identification of phytopathogenic Xanthomonas strains by amplification of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 60, 1068–1077.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leyns, F., DeCleene, M., Swings, J. G., & Deley, J. (1984). The host range of the genus Xanthomonas. Botanical Review, 50, 308–356.

    Article  Google Scholar 

  • López, M. M., Bertolini, E., Olmos, A., Caruso, P., Gorris, T. M., Llop, P., et al. (2003). Innovative tools for detection of plant pathogenic viruses and bacteria. International Microbiology, 6, 233–243.

    Article  PubMed  Google Scholar 

  • Louws, F. J., Rademaker, J. L. W., & de Bruijn, F. J. (1999). The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Annual Review of Phytopathology, 37, 81–125.

    Article  CAS  PubMed  Google Scholar 

  • Maes, M. (1993). Fast classification of plant-associated bacteria in the Xanthomonas genus. FEMS Microbiology Letters, 113, 161–166.

    Article  CAS  Google Scholar 

  • Mbega, R. E. (2011) Detection, characterization and control of Xanthomonas spp. causal agents of bacterial leaf spot of tomato in Tanzania. PhD Thesis, University of Copenhagen.

  • Mbega, E. R., Wulff, E. G., Mabagala, R. B., Adriko, J., Lund, O. S., & Mortensen, C. N. (2012a). Xanthomonads and other yellow-pigmented Xanthomonas-like bacteria associated with tomato seeds in Tanzania. African Journal of Biotechnology, 11, 14303–14312.

    CAS  Google Scholar 

  • Mbega, R. E., Mabagala, R. B., Adriko, J., Lund, O. S., Wulff, E. G., & Mortensen, C. N. (2012b). Five species of xanthomonads associated with bacterial leaf spot symptoms in tomato from Tanzania. Plant Disease, 96, 760.

    Article  Google Scholar 

  • Narayanasamy, P. (2011). Diagnosis of bacterial diseases of plants (pp. 233–246). London: Springer.

    Google Scholar 

  • Palacio-Bielsa, A., Cambra, M. A., & López, M. M. (2009). PCR detection and identification of plant-pathogenic bacteria: updated review of protocols (1989–2007). Journal of Plant Pathology, 91, 249–297.

    CAS  Google Scholar 

  • Parkinson, N., Aritua, V., Heeney, J., Cowie, C., Bew, J., & Stead, D. (2007). Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. International Journal of Systematic and Evolutionary Microbiology, 57, 2881–2887.

    Article  CAS  PubMed  Google Scholar 

  • Parkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systematic and Evolutionary Microbiology, 59, 264–274.

    Article  CAS  PubMed  Google Scholar 

  • Poplawsky, A. R., & Chun, W. (1998). Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Molecular Plant—Microbe Interactions, 11, 466–475.

    Article  CAS  PubMed  Google Scholar 

  • Robène-Soustrade, I., Legrand, D., Gagnevin, L., Chiroleu, F., Laurent, A., & Pruvost, O. (2010). Multiplex nested PCR for detection of Xanthomonas axonopodis pv. allii from onion seeds. Applied and Environmental Microbiology, 76, 2697–2703.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodriguez, L. M., Grajales, A., Arrieta-Ortiz, M. L., Salazar, C., Restrepo, S., & Bernal, A. (2012). Genome-based phylogeny of the genus Xanthomonas. BMC Microbiology, 12, 43.

    Article  Google Scholar 

  • Rozen, S., & Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers (pp. 365–386). Totowa: Humana Press.

    Google Scholar 

  • Schaad, W. N., Jones, J. B., & Lacy, H. G. (2001). Xanthomonas (p. 26). St Paul: APS Press.

    Google Scholar 

  • Simões, H. N. T., Gonçalves, R. E., Rosato, B. Y., & Mehta, A. (2007). Differentiation of Xanthomonas species by PCR-RFLP of rpfB and atpD genes. FEMS Microbiology Letters, 271, 33–39.

    Article  PubMed  Google Scholar 

  • Studholme, D. J., Wasukira, A., Paszkiewicz, K., Aritua, V., Thwaites, R., Smith, J., et al. (2011). Draft genome sequences of Xanthomonas sacchari and two banana-associated xanthomonads reveal insights into the Xanthomonas group I clade. Genes, 2, 1050–1065.

    Article  CAS  Google Scholar 

  • Swings, J. G., & Civerolo, E. L. (1993). Xanthomonas (p. 399). London: Chapman and Hall.

    Book  Google Scholar 

  • Vos, M., Quince, C., Pijl, A., Hollander, M., & Kowalchuk, G. (2012). A comparison of rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial diversity. PLoS ONE, 7, 1–8.

    Article  Google Scholar 

  • Young, J. M., Park, C. D., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31, 366–377.

    Article  CAS  PubMed  Google Scholar 

  • Young, J. M., Wilkie, J. P., Park, D. C., & Watson, D. R. W. (2010). New Zealand strains of plant pathogenic bacteria classified by multi-locus sequence analysis; proposal of Xanthomonas dyei sp. nov. Plant Pathology, 59, 270–281.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible through funding from DANIDA under the ENRECA project LIFE—731. The contribution of Hanne, B. Nielsen of Danish Seed Health Centre is acknowledged and highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Adriko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adriko, J., Mbega, E.R., Mortensen, C.N. et al. Improved PCR for identification of members of the genus Xanthomonas . Eur J Plant Pathol 138, 293–306 (2014). https://doi.org/10.1007/s10658-013-0329-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0329-x

Keywords

Navigation