Skip to main content
Log in

Fusarium oxysporum f.sp. cepae dynamics: in-plant multiplication and crop sequence simulations

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

To reduce Fusarium Basal Rot caused by Fusarium oxysporum f.sp. cepae (Foc) through crop rotation, plant species should be selected based on Foc multiplication in their roots. Foc multiplication rates in 13 plant species were tested in a greenhouse. All plant species enabled Foc multiplication. The lowest Foc levels (cfu g−1 dry root) were found for wheat, sunflower, cowpea and millet, the highest for black bean. The highest Foc levels per plant were calculated for sudan grass. These data were used to calibrate the model Pf = Pi/(α + βPi) relating final (Pf) and initial (Pi) Foc levels in the soil. The rate of population increase at low Pi (1/α) was highest for onion and black oat and smallest for sunflower. The pathogen carrying capacity (1/β) was highest for black oat and black bean, and lowest for wheat, cowpea and foxtail millet. Foc soil population dynamics was simulated for crop sequences by concatenating Pi-Pf values, considering instantaneous or gradual pathogen release after harvest. Different soil Foc populations were attained after reaching steady states. Foc populations in the sequence onion –foxtail millet - wheat – cowpea were 67 % lower than in the sequence onion – sudan grass - black oat - black beans. In this work, by combining detailed greenhouse experiments with modelling, we were able to screen crops for their ability to increase Foc population and to explore potential crop sequences that may limit pathogen build-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  • Abawi, G. S., & Lorbeer, J. W. (1972). Several aspects of the ecology of Fusarium oxysporum f. sp. cepae. Phytopathology, 62(8), 870–876.

    Article  Google Scholar 

  • Abawi, G. S., & Widmer, T. L. (2000). Impact of soil health management practices on soil-borne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 15(1), 37–47.

    Article  Google Scholar 

  • Agamennoni, R., Prioletta, S., Baffoni, P., Vanzolini, J. I., Caracotche, V., & Reinoso, O. (2008). Efecto de las rotaciones con pasturas y cultivos agrícolas. II. incidencia de podredumbre basal (Fusarium oxysporum f.sp. cepae) en la cebolla en el sur de Buenos Aires. In: XXXI Congreso Argentino de Horticultura Resúmenes de trabajos.; Mar del Plata, Buenos Aires, Argentina.

  • Altier, N. A., & Groth, J. V. (2005). Characterization of aggressiveness and vegetative compatibility diversity of Fusarium oxysporum associated with crown and root rot birdsfoot trefoil. Lotus Newsletter, 35(1), 59–74.

    Google Scholar 

  • Bahraminejad, S., Asenstorfer, R. E., Riley, I. T., & Schultz, C. J. (2008). Analysis of the antimicrobial activity of flavonoids and saponins isolated from the shoots of oats (Avena sativa L.). Journal of Phytopathology, 156(1), 1–7.

    CAS  Google Scholar 

  • Banihashemi, Z., & deZeeuw, D. J. (1975). The behaviour of Fusarium oxysporum f.sp. melonis in the presence and absence of host plants. Phytopathology, 65(11), 1212–1217.

    Article  Google Scholar 

  • Bishop, C., & Cooper, R. M. (1983). An ultrastructural study of vascular colonization in three vascular wilt diseases. Physiolgical Plant Pathology, 22(1), 15–27.

    Article  Google Scholar 

  • Brayford, D. (1996). IMI descriptions of fungi and bacteria No. 1263. Fusarium oxysporum f. sp. cepae. Mycopathologia, 133(1), 39–40.

    Article  Google Scholar 

  • Buhre, C., Kluth, C., Bürcky, K., Märländer, B., & Varrelmann, M. (2009). Integrated control of root and crown rot in sugar beet: combined effects of cultivar, crop rotation, and soil tillage. Plant Disease, 93(2), 155–161.

    Article  Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of The National Academy of Sciences of the United States of America, 96, 5952–5959 (Colloquium paper).

    Article  PubMed  CAS  Google Scholar 

  • Colbach, N., Lucas, P., & Cavelier, N. (1994). Influence des successions culturales sur les maladies du pied et des racines du blé d’hiver. Agronomie, 14(8), 525–540.

    Article  Google Scholar 

  • Coleman, D. C. (2008). From peds to paradoxes: linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry, 40(2), 271–289.

    Article  CAS  Google Scholar 

  • Dhingra, O. D., & Coelho Netto, R. A. (2001). Reservoir and non-reservoir hosts of bean-wilt pathogen, Fusarium oxysporum f.sp. phaseoli. Journal of Phytopathology, 149(7–8), 463–467.

    Article  Google Scholar 

  • Dogliotti, S., Rossing, W. A. H., & van Ittersum, M. K. (2003). ROTAT, a tool for systematically generating crop rotations. European Journal of Agronomy, 19(2), 239–250.

    Article  Google Scholar 

  • Edel, V., Steinberg, C., Gautheron, N., & Alabouvette, C. (1997). Populations of nonpathogenic Fusarium oxysporum associated with roots of four plant species compared to soilborne populations. Phytopathology, 87(7), 693–697.

    Article  PubMed  CAS  Google Scholar 

  • Elmer, W. H. (2009). Influence of earthworm activity on soil microbes and soilborne diseases of vegetables. Plant Disease, 93(2), 175–179.

    Article  Google Scholar 

  • Fox, J., & Weisberg, S. (2011). An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. Accesed 25 June 2012.

  • Galván, G. A., Koning-Boucoiran, C. F. S., Koopman, W. J. M., Burger-Meijer, K., González, P. H., Waalwijk, C., et al. (2008). Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. European Journal of Plant Pathology, 121(4), 499–512.

    Article  Google Scholar 

  • Gan, Y. T., Liang, B. C., Liu, L. P., Wang, X. Y., & McDonald, C. L. (2011). C:N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops. Crop and Pasture Science, 62(6), 496–503.

    Article  CAS  Google Scholar 

  • Gordon, T. R., Okamoto, D., & Jacobson, D. J. (1989). Colonization of muskmelon and nonsusceptible crops by Fusarium oxysporum f.sp. melonis and other species of Fusarium. Phytopathology, 79(10), 1095–1100.

    Article  Google Scholar 

  • Goud, J. C., Termorshuizen, A. J., & van Bruggen, A. H. C. (2011). Verticillium wilt in nursery trees: damage thresholds, spatial and temporal aspects. European Journal of Plant Pathology, 131(3), 451–465.

    Article  Google Scholar 

  • Grünwald, N. J., Hu, S., & van Bruggen, A. H. C. (2000). Short-term cover crop decomposition in organic and conventional soils; Characterization of soil C, N, microbial and plant pathogen dynamics. European Journal of Plant Pathology, 106(1), 37–50.

    Article  Google Scholar 

  • Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321(1–2), 235–257.

    Article  CAS  Google Scholar 

  • Helbig, J. B., & Carroll, R. B. (1984). Dicotyledonous weeds as a source of Fusarium oxysporum pathogenic on soybean. Plant Disease, 68(8), 694–696.

    Article  Google Scholar 

  • Hiddink, G. A., van Bruggen, A. H. C., Termorshuizen, A. J., Raaijmakers, J. M., & Semenov, A. V. (2005). Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. European Journal of Plant Pathology, 113(4), 417–435.

    Article  Google Scholar 

  • Hochman, Z., Carberry, P. S., Robertson, M. J., Gaydon, D. S., Bell, L. W., & McIntosh, P. C. (2013). Prospects for ecological intensification of Australian agriculture. European Journal of Agronomy, 44(1), 109–123.

    Article  Google Scholar 

  • INIA. (2012). Banco de Datos Agroclimático - GRAS (GRupo Agroclima y Sistemas de información). http://www.inia.org.uy/online/site/gras.php. Accesed 15 August 2012.

  • Janvier, C., Villenueve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., & Steinberg, C. (2007). Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biology and Biochemistry, 39(1), 1–23.

    Article  CAS  Google Scholar 

  • Katan, J. (1971). Symptomless carriers of the tomato Fusarium wilt pathogen. Phytopathology, 61(10), 1213–1217.

    Article  Google Scholar 

  • Lamari, L. (2002). ASSESS – image analysis software for plant disease quantification. St. Paul: American Phytopathological Society.

    Google Scholar 

  • Leoni, C., Rossing, W.A.H., & van Bruggen, A.H.C. (in press). Crop rotation. In: Finckh, M., Tamm, L., van Bruggen, A.H.C. (Eds) Plant disease management in organic agriculture. St. Paul: American Phytopathological Society.

  • Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. Iowa: Blackwell Publishing.

    Book  Google Scholar 

  • Leslie, J. F., Pearson, C. A. S., Nelson, P. E., & Toussoun, T. A. (1990). Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern United States. Phytopathology, 80(3), 343–350.

    Article  Google Scholar 

  • Lucas, P. (2006). Diseases caused by soil-borne pathogens. In B. M. Cooke, D. Gareth Jones, & B. Kaye (Eds.), The epidemiology of plant diseases (2nd ed., pp. 373–386). The Netherlands: Springer.

    Chapter  Google Scholar 

  • Matthiessen, J. N., & Kirkegaard, J. A. (2006). Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, 25(3), 235–265.

    Article  CAS  Google Scholar 

  • Mazzola, M. (2007). Manipulation of rhizosphere bacterial communities to induce suppressive soils. Journal of Nematology, 39(3), 213–220.

    PubMed  Google Scholar 

  • McDonald, M., Jaime, M., & Hovius, M. (2004). Management of diseases of onions and garlic. In S. A. M. H. Naqvi (Ed.), Diseases of fruits and vegetables (Vol. II, pp. 149–200). The Netherlands: Springer.

    Google Scholar 

  • Mol, L., Huisman, O. C., Scholte, K., & Struik, P. C. (1996). Theoretical approach to the dynamics of the inoculum density of Verticillium dahliae in the soil: first test of a simple model. Plant Pathology, 45, 192–204.

    Article  Google Scholar 

  • Oritsejafor, J. J., & Adeniji, M. O. (1990). Influence of host and non-host rhizospheres and organic amendments on survival of Fusarium oxysporum f.sp. elaeidis. Mycological Research, 94(1), 57–63.

    Article  Google Scholar 

  • Özer, N., & Köycü, D. (2004). Seed-borne fungal diseases of onion, and their control. Fruit and Vegetable Diseases, 1, 281–306.

    Article  Google Scholar 

  • Özer, N., Kycti, N. D., Mirik, M., Soran, H., & Boyraz, D. (2002). Effect of some organic amendments on Onion bulb rot. Phytoparasitica, 30(4), 429–433.

    Article  Google Scholar 

  • Postma, J., & Luttikholt, A. J. G. (1993). Benomyl-resistant Fusarium isolates in ecological studies on the biological control of fusarium wilt in carnation. Netherlands Journal of Plant Pathology, 99, 175–188.

    Article  Google Scholar 

  • R Development Core Team. (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.

  • Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 32(1), 273–303.

    Article  Google Scholar 

  • Sarkar, D. (2008). Lattice: Multivariate data visualization with R. New York: Springer.

    Google Scholar 

  • Silver, W. L., & Miya, R. K. (2001). Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129(3), 407–419.

    Google Scholar 

  • Smolińska, U. (2000). Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. Journal of Phytopahthology, 148(6), 343–349.

    Google Scholar 

  • Stirling, G. R. (2008). The impact of farming systems on soil biology and soilborne diseases:examples from the Australian sugar and vegetable industries – the case for better integration of sugarcane and vegetable production and implications for future research. Australasian Plant Pathology, 37(1), 1–18.

    Article  Google Scholar 

  • Suzuki, R., & Shimodaira, H. (2011). Pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling. R package version 1.2-2. http://CRAN.R-project.org/package=pvclust. Accesed 25 June 2012.

  • Taylor, C. R., & Rodriguez-Kábana, R. (1999). Optimal rotation of peanuts and cotton to manage soil-borne organisms. Agricultural Systems, 61(1), 57–68.

    Article  Google Scholar 

  • ter Braak, C. J. F., & Vrugt, J. A. (2008). Differential evolution Markov Chain with snooker update rand fewer chains. Statistics and Computing, 18(4), 435–446.

    Article  Google Scholar 

  • Termorshuizen, A. J., & Rouse, D. I. (1993). Towards a mechanistic model for the Verticillium dahliae - potato system. European Journal of Plant Pathology, 99(Suppl. 3), 201–218.

    Google Scholar 

  • Thrall, P. H., Bever, J. D., Mihail, J. D., & Alexander, H. M. (1997). The population dynamics of annual plants and soil-borne fungal pathogens. Journal of Ecology, 85(3), 313–328.

    Article  Google Scholar 

  • Tixier, P., Risède, J. M., Dorel, M., & Malézieux, E. (2006). Modelling population dynamics of banana plant-parasitic nematodes: a contribution to the design of sustainable cropping systems. Ecological Modelling, 198(3–4), 321–331.

    Article  Google Scholar 

  • van Bruggen, A. H. C., & Semenov, A. M. (1999). A new approach to the search for indicators of root disease suppression. Australasian Plant Pathology, 28(1), 4–10.

    Article  Google Scholar 

  • van Bruggen, A. H. C., & Termorshuizen, A. J. (2003). Integrated approaches to root disease management in organic farming systems. Australasian Plant Pathology, 32(2), 141–156.

    Article  Google Scholar 

  • van den Berg, W., & Rossing, W. A. H. (2005). Generalized linear dynamics of a plant-parasitic nematode population and the economic evaluation of crop rotations. Journal of Nematology, 37(1), 55–65.

    Google Scholar 

  • van den Berg, W., Rossing, W. A. H., & Grasman, J. (2006). Contest and scramble competition and the carry-over effect in Globodera spp. in potato-based crop rotation using an extended Ricker model. Journal of Nematology, 38(2), 210–220.

    Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biololgy and Biochemistry, 40(1), 1–10.

    Article  CAS  Google Scholar 

  • Zelenev, V. V., van Bruggen, A. H. C., Leffelaar, P. A., Bloem, J., & Semenov, A. M. (2006). Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: the simulation model ‘BACWAVE-WEB’. Soil Biology and Biochemistry, 38(7), 1690–1711.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. ir. Joeke Postma for her advice during the development of benomyl-resistant Fusarium oxysoprum f.sp. cepae (Foc) isolates, and Kirsten Oude Leferink, Kim van Groningen and Dine Volker (Wageningen University) for their laboratory work with the Foc isolates. We thank Beatriz Dini, Alfredo Fernandez and Sebastian Aranda (INIA - Las Brujas Research Station) for their assistance in the greenhouse experiments. The first author thanks the Alban Programme of the European Union (Fellowship E07D401358UY), the Erasmus Mundus – Monesia scholarship program, and The National Agricultural Research Institute of Uruguay (INIA) for their financial support. Partial results of this research were presented at 19th ISTRO Conference, September 24–28 2012, Montevideo, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Leoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leoni, C., de Vries, M., ter Braak, C.J.F. et al. Fusarium oxysporum f.sp. cepae dynamics: in-plant multiplication and crop sequence simulations. Eur J Plant Pathol 137, 545–561 (2013). https://doi.org/10.1007/s10658-013-0268-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0268-6

Keywords

Navigation