Skip to main content
Log in

Molecular characterization of Pseudomonas syringae isolates from fruit trees and raspberry in Serbia

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Infection of fruit trees by Pseudomonas syringae is a potentially serious problem that may limit the establishment and sustained productivity of pome and stone fruit orchards in Serbia. To estimate possible diversity of Pseudomonas syringae fruit trees strains, we collected a set of strains in several areas of Serbia. The samples were taken from infected orchards with raspberry, plum, cherry, sour cherry, peach, pear and apple trees. Genetic diversity of P. syringae strains isolated from fruit trees was determined by using SpeI macrorestriction analysis of genomic DNAs by pulsed-field gel electrophoresis (PFGE) and REP-PCR. Molecular analysis showed that most of isolates had unique profiles, with the exception of isolates from plum and cherry that displayed profiles identical to each other and similar to P. syringae pv. morsprunorum. The study presented here clearly demonstrates the discriminative power of molecular techniques in enabling a detailed analysis of the genetic variations between strains of P. syringae from different pome and stone fruit hosts in Serbia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (Eds.). (1992). Current protocols in molecular biology, Vol. I. New York: Greene Publishing Associates and Wiley-Interscience.

    Google Scholar 

  • Balaz, J., & Arsenijevic, M. (1989). Further investigations on the Pseudomonas syringae pathovar as a pathogen of sour cherry fruits in Yugoslavia. (Paper presented at the 7th Int. Conf. Plant Path. Bact., Budapest, Hungary, pp. 515–520.

  • Braun-Kiewnick, A., & Sands, D. C. (2001). Pseudomonas. In N. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (pp. 84–117). St. Paul: APS PRESS, American Phytopathological Society.

    Google Scholar 

  • Burkowicz, A., & Rudolph, K. (1994). Evaluation of pathogenicity and of cultural and biochemical tests for identification of Pseudomonas syringae pathovars syringae, morsprunorum, and persicae from fruit trees. Journal of Phytopathology, 141, 59–76.

    Article  Google Scholar 

  • Clerc, A., Manceau, C., & Nesme, X. (1998). Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae. Applied and Environmental Microbiology, 64, 1180–1187.

    PubMed  CAS  Google Scholar 

  • de Bruijn, F. J. (1992). Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied and Environmental Microbiology, 58, 2180–2187.

    PubMed  Google Scholar 

  • Felsenstein, J. (1993). Phylogeny inference package version 3.5 c. Seattle, Wash: Department of Genetics, University of Washington.

  • Ferrente, P., & Scotrichini, M. (2010). Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensisi) in central Italy. Plant Pathology, 59, 954–962.

    Article  Google Scholar 

  • Gonzalez, A. J., Landeras, E., & Carmen, M. M. (2000). Pathovars of Pseudomonas syringae causing bacterial brown spot and halo blight in Phaseolus vulgaris L. are distinguishable by ribotyping. Applied and Environmental Microbiology, 66, 850–854.

    Article  PubMed  CAS  Google Scholar 

  • Grothues, D., & Rudolph, K. (1991). Macrorestriction analysis of plant pathogenic Pseudomonas species and pathovars. FEMS Microbiology Letters, 79, 83–88.

    Article  CAS  Google Scholar 

  • Guven, K., Jones, B., Momol, M. T., & Dickstein, E. R. (2004). Phenotypic and genetic diversity among Pseudomonas syringae pv. phaseolicola. Journal of Phytopathology, 152, 658–666.

    Article  CAS  Google Scholar 

  • Hugh, R., & Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of Bacteriology, 66, 24–26.

    PubMed  CAS  Google Scholar 

  • Ivanovic, Z., Zivkovic, S., Starovic, M., Josic, D., Stankovic, S., & Gavrilovic, V. (2009). Diversity among Pseudomonas syringae strains originating from fruit trees in Serbia. Archives of Biological Sciences, 61(4), 863–870.

    Article  Google Scholar 

  • Klement, Z. (1990). Inoculation plant tissues. Cancer and dieback disease. In Z. Klement, K. Rudolph, & D. Sands (Eds.), Methods in phytobacteriology (pp. 105–106). Budapest: Akademiai Kiado.

    Google Scholar 

  • Kojic, M., Strahinic, I., Fira, D., Jovcic, B., & Topisirovic, L. (2006). Plasmid content and bacteriocin production by five strains of Lactococcus lactis isolated from semi-hard homemade cheese. Canadian Journal of Microbiology, 52, 1110–1120.

    Article  PubMed  CAS  Google Scholar 

  • Latorre, B. A., & Jones, A. L. (1979). Pseudomonas morsprunorum, the cause of bacterial canker of sour cherry in Michigan, and its epiphytic association with P. syringae. Phytopathology, 69, 335–339.

    Article  Google Scholar 

  • Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis for bacterial disease of plants. Oxford, London, Edinburgh: British Society for Plant Pathology, Blackwell Scientific Publications.

  • Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.

    PubMed  CAS  Google Scholar 

  • Louws, F. J., Bell, J., Medina-Mora, C. M., Smart, C. D., Opgenorth, D., Ishimaru, C. A., Hausbeck, M. K., de Bruijn, F. J., & Fulbright, D. W. (1998). rep-PCR–mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology, 88, 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Lupski, J. R., & Weinstock, G. M. (1992). Short, interspersed repetitive DNA sequences in prokaryotic genomes. Journal of Bacteriology, 174, 4525–4529.

    PubMed  CAS  Google Scholar 

  • Manceau, C., & Brin, C. (2003). Pathovars of Pseudomonas syringae are structured in genetic populations allowing the selection of specific markers for their detection in plant samples. In N. S. Iacobellis, A. Collmer, S. W. Hutcheson, et al. (Eds.), Pseudomonas syringae and related pathogens (pp. 503–512). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Manceau, C., & Horvais, A. (1997). Assessment of genetic diversity among strains of Pseudomonas syringae by PCR restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Applied and Environmental Microbiology, 63, 498–505.

    PubMed  CAS  Google Scholar 

  • Mo, Y. Y., & Gross, D. C. (1991). Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. Journal of Bacteriology, 173, 5784–5792.

    PubMed  CAS  Google Scholar 

  • Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76, 1619–1626.

    Article  Google Scholar 

  • Obradovic, A., Gavrilovic, V., Ivanovic, M., & Gasic, K. (2008). Pseudomonas blight of raspberry in Serbia. In: M. Fatmi, A. Collmer, N.S. Iacobellis, J.W. Mansfield, J. Murillo, N.W. Schaad, M. Ullrich (eds.) Pseudomonas syringae pathovars and related pathogens—identification, epidemiology and genomics (pp. 413–417). Springer Science + Business Media B. V.

  • Paterson, J. M., & Jones, A. L. (1991). Detection of Pseudomonas syringae pv. morsprunorum on cherries in Michigan with a DNA hybridization probe. Plant Disease, 75, 893–896.

    Article  Google Scholar 

  • Renick, L. J., Cogal, A. G., & Sundin, G. W. (2008). Phenotypic and genetic analysis of epiphytic pseudomonas syringae populations from sweet cherry in Michigan. Plant Disease, 92, 372–378.

    Article  CAS  Google Scholar 

  • Rico, A., & Preston, G. M. (2008). Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions, 21, 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Sawada, H., Suzuki, F., Matsuda, I., & Saitou, N. (1999). Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Journal of Molecular Evolution, 49, 627–644.

    Article  PubMed  CAS  Google Scholar 

  • Scholz, B. K., Jakobek, J. L., & Lindgren, P. B. (1994). Restriction fragment length polymorphism evidence for genetic homology within a pathovar of Pseudomonas syringae. Applied and Environmental Microbiology, 60, 1093–1100.

    PubMed  CAS  Google Scholar 

  • Sorensen, K. N., Kim, K.-H., & Takemoto, J. Y. (1998). PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Applied and Environmental Microbiology, 61, 226–230.

    Google Scholar 

  • Suslow, T. V., Schroth, M. N., & Isaka, M. (1982). Application of rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72, 917–918.

    Article  Google Scholar 

  • Vicente, J. G., & Roberts, S. J. (2007). Discrimination of Pseudomonas syringae isolates from sweet and wild cherry using rep-PCR. European Journal of Plant Pathology, 117, 383–392.

    Article  CAS  Google Scholar 

  • Vicente, J. G., Alves, J. P., Russell, K., & Roberts, S. J. (2004). Identification and discrimination of pseudomonas syringae isolates from wild cherry in England. European Journal of Plant Pathology, 110, 337–351.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Geider, K. (1997). Differentiation of Erwinia amylovora strains by pulsed-field gel electrophoresis. Applied and Environmental Microbiology, 63, 4421–4426.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science, Republic of Serbia (Grants No. 173026 and 31018)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Fira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanović, Ž., Stanković, S., Živković, S. et al. Molecular characterization of Pseudomonas syringae isolates from fruit trees and raspberry in Serbia. Eur J Plant Pathol 134, 191–203 (2012). https://doi.org/10.1007/s10658-012-9978-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-9978-4

Keywords

Navigation