Skip to main content

Advertisement

Log in

Control of foliar diseases in barley: towards an integrated approach

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Barley is one of the world’s most important crops providing food and related products for millions of people. Diseases continue to pose a serious threat to barley production, despite the use of fungicides and resistant varieties, highlighting the impact of fungicide resistance and the breakdown of host plant resistance on the efficacy of control measures. This paper reviews progress towards an integrated approach for disease management in barley in which new methods may be combined with existing measures to improve the efficacy of control in the long-term. Advances have been made in genetic mapping of resistance (R) genes and in identifying novel sources of genes in wild barley populations and land races. Marker assisted selection techniques are being used to pyramid R genes to increase the durability of resistance. Elicitors to induce host resistance used in combination with fungicides can provide effective disease control in the field and could delay the evolution of fungicide insensitivity. Traits that may contribute to disease tolerance and escape have been identified and the extent of genetic variation within barley germplasm is being determined. Tools are being developed to integrate the above methods via an assessment of the risk of economic injury occurring from disease to guide decisions on the requirement for fungicide treatment. Barriers exist to the adoption of integrated management approaches from growers and end-users further down the supply chain (e.g. acceptance of variety mixtures) and policy incentives from government may be required for it to be taken up in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Sadi, A. M., & Deadman, M. L. (2010). Influence of Seed-borne Cochliobolus sativus (Anamorph Bipolaris sorokiniana) on Crown Rot and Root Rot of Barley and Wheat. Journal of Phytopthology, 158, 683–690.

    Article  Google Scholar 

  • Angus, J. F., Jones, R., & Wilson, J. H. (1972). A comparison of barley cultivars with different leaf inclinations. Australian Journal of Agricultural Research, 23, 945–957.

    Article  Google Scholar 

  • Arabi, M. I. E., Al-Shehadah, E., & Jawhar, M. (2009). Viability of Pyrenophora graminae cultures after sunlight exposure under field conditions. Journal of Plant Pathology, 91, 299–303.

    Google Scholar 

  • Arraiano, L. S., Balaam, N., Fenwick, P. M., Chapman, C., Feuerhelm, D., Howell, P., Smith, S. J., Widdowson, J. P., & Brown, J. K. M. (2009). Contributions of disease resistance and escape to the control of septoria tritici blotch of wheat. Plant Pathology, 58, 910–922.

    Article  Google Scholar 

  • Asby, C., & Renwick, A. (2000). Economics of Cereal Production. MAFF Special Studies in Agricultural Economics no. 48. UK: University of Cambridge.

    Google Scholar 

  • Ashby, D., & Smith, A. F. M. (2000). Evidence-based medicine as Bayesian decision-making. Statistics in Medicine, 19, 3291–3305.

    Article  PubMed  CAS  Google Scholar 

  • Atkins, S.D., Fitt, B.D.L., Fraaije, B., Harvey, S., Lynott, J. &, Newton, A.C. (2010). The epidemiological importance of asymptomatic infection of winter barley by Rhynchosporium secalis and its consequences for crop protection and breeding. Proceedings Crop Protection in Northern Britain, Dundee, February 2010, 81-86.

  • Attari, H. E., Hayes, P. M., Rebai, A., Barrault, G., champ-Guillaume, G., & Sarrafi, A. (1998). Potential of doubled-haploid lines and localization of quantitative trait loci (QTL) for partial resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) in barley. Theoretical and Applied Genetics, 96, 95–100.

    Article  Google Scholar 

  • Aust, H. J., & von Hoyningen-Heuene, J. (1986). Microclimate in relation to epidemics of powdery mildew. Annual Review of Phytopathology, 24, 491–510.

    Article  Google Scholar 

  • Backes, G., Graner, A., Foroughi-Wehr, B., Fischbeck, G., Wenzel, G., & Jahoor, A. (1995). Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 90, 294–302.

    Article  CAS  Google Scholar 

  • Baker, B., Zambryski, P., Staskawicz, B., & Dinesh-Kumar, S. P. (1997). Signalling in plant-microbe interactions. Science, 276, 726–733.

    Article  PubMed  CAS  Google Scholar 

  • Bastiaans, L. (1991). The ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology, 81, 611–615.

    Article  Google Scholar 

  • Bateman, G. L., Gutteridge, R. J., Gherbawy, Y., Thomsett, M. A., & Nicholson, P. (2007). Infection of stem bases and grains of winter wheat by Fusarium culmorum and F. graminearum and effects of tillage method and maize stalk residues. Plant Pathology, 56, 604–615.

    Article  Google Scholar 

  • Baulcombe, D. (2011). Reaping the benefits: science and the sustainable intensification of global agriculture. London: RS Policy document 11/09, The Royal Society.

    Google Scholar 

  • Belkhadir, Y., Subramaniam, R., & Dangl, J. L. (2004). Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Current Opinion in Plant Biology, 7, 391–399.

    Article  PubMed  CAS  Google Scholar 

  • Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J., & Staskawicz, B. J. (1994). RPS 2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science, 265, 1856–1860.

    Article  PubMed  CAS  Google Scholar 

  • Bingham, .IJ. (2010). Variation in the response of spring barley genotypes to leaf damage. pp 533-534 Agro 2010. Proceedings of the XI European Society for Agronomy Congress, Montpellier, France, 29 Aug-3 Sept 2010.

  • Bingham, I. J., Blake, J., Foulkes, M. J., & Spink, J. (2007). Is barley yield in the UK sink limited? I. Post-anthesis radiation interception, radiation-use efficiency and source-sink balance. Field Crops Research, 101, 198–211.

    Article  Google Scholar 

  • Bingham, I.J., Hoad, S.P., Newton, A.C. & Thomas, W.T.B. (2008). Avoidance and tolerance of foliar disease in barley: opportunities for improvement. Proceedings Crop Protection in Northern Britain, Dundee, February 2008, 139-144.

  • Bingham, I. J., & Newton, A. C. (2009). Crop tolerance of foliar pathogens: possible mechanisms and potential for exploitation. In D. Walters (Ed.), Disease Control in Crops: biological and environmentally friendly approaches (pp. 142–161). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Bingham, I. J., & Topp, C. F. E. (2009). Potential contribution of selected canopy traits to the tolerance of foliar disease by spring barley. Plant Pathology, 58, 1010–1020.

    Article  Google Scholar 

  • Bingham, I. J., Walters, D. R., Foulkes, M. J., & Paveley, N. D. (2009). Crop traits and the tolerance of wheat and barley to foliar disease. Annals of Applied Biology, 154, 159–173.

    Article  Google Scholar 

  • Bingham, I., Young, C., Smith, J., Spink, J & Paveley N. (2010). Targeting winter barley disease management. pp 1-156. HGCA Project Report no. 470.

  • Binns, M., Nyrop, J. P., & van der Werf, W. (2000). Sampling and Monitoring for Crop Protection Decision Making. London: CAB International.

    Google Scholar 

  • Bjønstad, Å., Patil, V., Tekauz, A., et al. (2002). Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines. I. Markers and differential isolates. Phytopathology, 92, 710–720.

    Article  Google Scholar 

  • Borovkova, I. G., Steffenson, B. J., Jin, Y., Kilian, A., Kleinhofs, A., & Blake, T. K. (1997). Identification and mapping of a leaf rust resistance gene in barley line Q21861. Genome, 40, 236–241.

    Article  PubMed  CAS  Google Scholar 

  • Borovkova, I. G., Jin, Y., & Steffenson, B. J. (1998). Chromosomal location and genetic relationship of leaf rust resistance genes Rph9 and Rph12 in barley. Phytopathology, 88, 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, S., & Zwi, A. B. (2005). Pathways to “evidence-informed” policy and practice: a framework for action. PLoS Medicine, 2, e166.

    Article  PubMed  Google Scholar 

  • Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance in crop protection, how can it be managed. FRAC Monograph 1, 2 nd edition (p. 56). Brussels, Belgium: FRAC.

    Google Scholar 

  • Brown, A. H. D., Garvin, D. F., Burdon, J. J., Abbott, D. C., & Read, B. J. (1996). The effect of combining scald resistance genes on disease levels, yield and quality traits in barley. Theoretical and Applied Genetics, 93, 361–366.

    Article  CAS  Google Scholar 

  • Brown, J. K. M. (2002). Yield penalties of disease resistance in crops. Current Opinion in Plant Biology, 5, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. S. (1985). Pathogenic variation among isolates of Rhynchosporium secalis from cultivated barley growing in Victoria, Australia. Euphytica, 34, 129–133.

    Article  Google Scholar 

  • Brown, W. M., Hill, J. P., & Velasco, V. R. (2001). Barley yellow rust in North America. Annual Review of Phytopathology, 39, 367–384.

    Article  PubMed  CAS  Google Scholar 

  • Browning, J. A., & Fey, K. J. (1969). Multiline cultivars as a means of disease control. Annual Review of Phytopathology, 14, 355–382.

    Article  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., & Kleinhofs, A. (2002). The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 99, 9328–9333.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, S., Keller, B., & Feuillet, C. (2000). Molecular mappingof the Rph7.g leaf rust resistance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 101, 783–788.

    Article  CAS  Google Scholar 

  • Bulgarelli, D., Biselli, C., Collins, N. C., Consonni, G., Stanca, A. M., Schulze-Lefert, P., & Vale, G. (2010). The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death. PLoS One, 5, e12599. doi:10.1371/journal.pone.0012599.

    Article  PubMed  CAS  Google Scholar 

  • Burnett, F. (2011). FRAG – UK (Fungicide Resistance Action Group – UK) – a review of the context, work and aims of this UK resistance action group. UK: FRAG.

    Google Scholar 

  • Burnett, F., & Hughes, G. (2004). The development of a risk assessment method to identify wheat crops at risk from eyespot. Project Report No. 347. London: HGCA.

    Google Scholar 

  • Carmona, M., Barreto, D., Moschini, R., & Reis, E. (2008). Epidemiology and control of seed borne Drechslera teres on barley. Cereal Research Communications, 36, 637–645.

    Article  CAS  Google Scholar 

  • Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security, an overview. Plant Pathology, 60, 2–14.

    Article  Google Scholar 

  • Chandler, D., Grant, W., Greaves, J., Prince, G., & Tatchell, M. (2007). Biopesticides: The Regulatory Challenge. Wellesbourne, Warwickshire: Warwick HRI.

    Google Scholar 

  • Chełkowski, J., Tyrka, M., & Sobkiewicz, A. (2003). Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. Journal of Applied Genetics, 44, 291–309.

    PubMed  Google Scholar 

  • Chen, F. Q., Prehn, D., Hayes, P. M., Mulrooney, D., Corey, A., & Vivar, H. (1994). Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theoretical and Applied Genetics, 88, 215–219.

    CAS  Google Scholar 

  • Chin, K. M., & Wolfe, M. S. (1984). The spread of Erysiphe graminis f. sp. hordei in mixtures of barley varieties. Plant Pathology, 33, 89–100.

    Article  Google Scholar 

  • Clifford, B. C. (1985). Barley leaf rust. In A. P. Roelfs & W. R. Bushnell (Eds.), The Cereal Rusts. Vol. II. Diseases, Distribution, Epidemiology, and Control (pp. 173–205). Orlando, FL: Academic.

    Google Scholar 

  • Close, T. J., Bhat, P. R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A., Stein, N., Svensson, J. T., Wanamaker, S., Bozdag, S., Roose, M. L., Moscou, M. J., Chao, S., Varshney, R. K., Szűcs, P., Sato, K., Hayes, P. M., Matthews, D. E., Kleinhofs, A., Muehlbauer, G. J., DeYoung, J., Marshall, D. F., Madishetty, K., Fenton, R. D., Condamine, P., Graner, A., & Waugh, R. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582. doi:10.1186/1471-2164-10-582.

    Article  PubMed  CAS  Google Scholar 

  • Cockerell, V., Rennie, W. J., & Jacks, M. (1995). Incidence and control of barley leaf stripe (Pyrenophora graminae) in Scottish barley during the period 1987-1992. Plant Pathology, 44, 655–661.

    Article  Google Scholar 

  • Collett, D. (2003). Modelling Binary Data (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Conrath, U. (2009). Priming of induced plant defence responses. Advances in Botanical Research, 51, 361–395.

    Article  CAS  Google Scholar 

  • Cooke, L. R., Locke, T., Lockley, K. D., Phillips, A., Sadiq, M. D. S., Coll, R., Black, L., Taggart, P. J., & Mercer, P. C. (2004). The effect of fungicide programmes based on epoxiconazole on the control and DMI sensitivity of Rhynchosporium secalis in winter barley. Crop Protection, 23, 393–406.

    Article  CAS  Google Scholar 

  • Cowley, T., & Walters, D. (2005). Local and systemic effects of oxylipins on powdery mildew infection in barley. Pest Management Science, 61, 572–576.

    Article  PubMed  CAS  Google Scholar 

  • Crous, P. W., Kang, J. C., & Braun, U. (2001). A phylogentic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequences and morphology. Mycologia, 93, 1081–1101.

    Article  CAS  Google Scholar 

  • Czembor, J. H., & Johnston, M. R. (2008). Resistance to powdery mildew in selections from Tunisian landraces of barley. Plant Breeding, 118, 503–509.

    Article  Google Scholar 

  • Davis, M. & Jackson, L.F. (2005). UC IPM Pest Management Guidelines: Small Grains UC NR Publication 3466 Diseases. Statewide IPM program, Agriculture and Natural Resources, University of California.

  • Day, K. L. (1984). The effect of cultivar mixtures on foliar disease and yield in barley and wheat. MSc thesis, University of Newcastle Upon Tyne.

  • Defra. (2010), Consultation on the implementation of EU pesticide legislation; summary and government response. www.defra.gov.uk/corporate/consult/pesticides/

  • De Schutter, O. (2011). Report submitted by the Special Rapporteur on the on the Right to Food. United Nations Human Rights Council 16 th Session Agenda Item 3. UN, New York.

  • Dietrich, R., Ploss, K., & Heil, M. (2005). Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant, Cell & Environment, 28, 211–222.

    Article  CAS  Google Scholar 

  • Drost, D., Long, G., Wilson, D., Miller, B., & Campbell, W. (1996). Barriers to adopting sustainable agricultural practices. Journal of Extension, Volume 34, 1-7 (www.joe.org/joeI1996december/rbl.html-18k).

    Google Scholar 

  • Drummond, H. (2001). The Art of Decision Making. Chichester: John Wiley & Sons.

    Google Scholar 

  • Eibel, P., Wolf, G. A., & Koch, E. (2005). Development and evaluation of an enzyme-linked immunosorbent assay (ELISA) for the detection of loose smut of barley (Ustilago nuda). European Journal of Plant Pathology, 111, 113–124.

    Article  CAS  Google Scholar 

  • ENDURE. (2010). Integrated Pest Management in Europe. INRA, 132 pp.

  • Essah, S. Y. C., & Stoskopf, N. C. (2002). Mixture performance of phenotypicaly contrasting barley cultivars. Canadian Journal of Plant Science, 82, 1–6.

    Article  Google Scholar 

  • FAOSTAT. (2011). Global barley production in 2009. Food and Agriculture Organisation, Statistics Division. Data accessed on 3 June 2011. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of Agricultural Innovations in Developing Countries: A Survey. Economic Development and Cultural Change, 33, 255–298.

    Article  Google Scholar 

  • Finckh, M. R., Gacek, E. S., Goyeau, H., Lannou, C., Merz, U., Mundt, C. C., Munk, L., Nadziak, J., Newton, A. C., de Vallavieille-Pope, C., & Wolfe, M. S. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie: Plant Genetics and Breeding, 20, 813–837.

    Google Scholar 

  • Fitt, B. D. L., Creighton, N. F., Lacey, M. E., & McCartney, H. A. (1986). Effects of rainfall intensity and duration on dispersal of Rhynchosporium secalis conidia from infected barley leaves. Transactions of the British Mycological Society, 86, 611–618.

    Article  Google Scholar 

  • Fitt, B. D. L., McCartney, H. A., & Walklate, P. J. (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology, 27, 241–270.

    Article  Google Scholar 

  • Foulkes, M. J., Paveley, N. D., Worland, A., Welham, S. J., Thomas, J., & Snape, J. W. (2006). Major genetic changes in wheat with potential to affect disease tolerance. Phytopathology, 96, 680–688.

    Article  PubMed  CAS  Google Scholar 

  • Fountaine, J. M., & Fraaije, B. A. (2009). Development of QoI resistant alleles in populations of Ramularia collo-cygni. Aspects of Applied Biology, 92, 123–126.

    Google Scholar 

  • Fountaine, J.M. (2011). Screening for Qol resistance in UK populations of Rhynchosporium secalis, HGCA project report.

  • Fountaine, J. M., Shaw, M. W., Napier, B., Ward, E., & Fraaije, B. A. (2007). Application of real-time and multiplex polymerase chain reaction assays to study leaf blotch epidemics in barley. Phytopathology, 97, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Fountaine, J. M., Shaw, M. W., Ward, E., & Fraaije, B. A. (2010). The role of seeds and airborne inoculum in the initiation of leaf blotch (Rhynchosporium secalis) epidemics in winter barley. Plant Pathology, 59, 330–337.

    Article  CAS  Google Scholar 

  • Fraaije, B. A., Cools, H. J., Fountaine, J. M., Lovell, D. J., Motteram, J., West, J. S., & Lucas, J. A. (2005). QoI resistant isolates of Mycosphaerella graminicola and the role of ascospores in further spread of resistant alleles in field populations. Phytopathology, 95, 933–941.

    Article  PubMed  CAS  Google Scholar 

  • Fungicide Resistance Action Group – UK. (2010). Fungicide resistance in cereals. FRAG – UK, http://www.pesticides.gov.uk/rags.asp?id=644

  • Gaunt, R. E. (1995). The relationship between plant disease severity and yield. Annual Review of Phytopathology, 33, 119–144.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, S. B., Allard, R. W., & Webster, R. K. (1990). A nomenclature for Rhynchosporium secalis pathotypes. Phytopathology, 80, 1330–1336.

    Article  Google Scholar 

  • Govindasamy, R., Italia, J., & Adelaja, A. (2001). Willingness to Pay a premium for Integrated Pest Management Produce: A Logistic Approach. Agricultural and Resource Economics Review, 30(2), 151–159.

    Google Scholar 

  • Grando, S., & Macpherson, H.G. (2005). Food barley: importance, uses, and local knowledge. ICARDA, Aleppo: Syria. http://www.icarda.org

  • Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Inner, R. W., & Dangl, J. L. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269, 843–846.

    Article  PubMed  CAS  Google Scholar 

  • Grasso, V., Sierotzki, H., Garibaldi, A., & Gisi, U. (2006). Characterization of the cytochrome b gene fragment of puccinia species responsible for the binding site of QoI fungicides. Pesticide Biochemistry and Physiology, 84, 72–82.

    Article  CAS  Google Scholar 

  • Grossmann, K., Kwiatkowski, J., & Casper, G. (1999). Regulation of phytohormone levels, leaf senescence and transpiration by the strobilurin kresoxim-methyl in wheat (Triticum aestivum). Journal of Plant Physiology, 154, 805–808.

    Article  CAS  Google Scholar 

  • Gustafson, D. H., Cats-Baril, W. L., & Alemi, F. (1992). Systems to Support Health Policy Analysis: Theory, Models, and Uses. Ann Arbor, MI: Health Administration Press.

    Google Scholar 

  • Habgood, R. M. (1971). The transmission of Rhynchosporium secalis by infected barley seed. Plant Pathology, 20, 80–81.

    Article  CAS  Google Scholar 

  • Habgood, R. M. (1973). Variation in Rhynchosporium secalis. Transactions of the British Mycological Society, 61, 41–47.

    Article  Google Scholar 

  • Habgood, R. M., & Hayes, J. D. (1971). The inheritance of resistance to Rhynchosporium secalis in barley. Heredity, 27, 25–37.

    Article  Google Scholar 

  • Halterman, D., Zhou, F., Wei, F., Wise, R. P., & Schulze-Lefert, P. (2001). The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specifity to Blumeria graminis f. sp. hordei in barley and wheat. The Plant Journal, 25, 335–348.

    Article  PubMed  CAS  Google Scholar 

  • Halterman, D. A., & Wise, R. P. (2004). A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. The Plant Journal, 38, 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt, R. (2007). Introduction: definitions and some history. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence: a sustainable approach to crop protection (pp. 1–8). Oxford: Blackwell Publishing.

    Chapter  Google Scholar 

  • Hanemann, A., Schweizer, G. F., Cossu, R., Wicker, T., & Roder, M. S. (2009). Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theoretical and Applied Genetics, 119, 1507–1522.

    Article  PubMed  CAS  Google Scholar 

  • Hardwick, N., Slough, J. E., & Gladders, P. (2002). Winter Barley: a survey of disease 2002. CSL, ADAS, UK: DEFRA.

    Google Scholar 

  • Hau, B., & De Vallavieille-Pope, C. (2006). Wind dispersed diseases. In B. M. Cooke, G. Jones, & B. Kaye (Eds.), The Epidemiology of Plant Diseases (2nd ed., pp. 387–416). New York: Springer.

    Google Scholar 

  • Havis, N. D., Piper, S. R., Oxley, S. J. P., & Langrell, S. R. H. (2004). Development of a PCR based identification and detection assay for Ramularia collo-cygni direct from barley leaf tissue. Meeting the Challenges of Barley Blights. A.H. Yahyaoui, L., Brader, A., Tekauz, H., Wallwork, & B. Steffenson (Eds), Proceedings of the Second International Workshop on Barley Leaf Blights, (ICARDA), Aleppo, Syria. April, 2002, 343–350.

    Google Scholar 

  • Havis, N. D., Oxley, S. J. P., Piper, S. R., & Langrell, S. R. H. (2006). Rapid nested PCR-based detection of Ramularia collo-cygni direct from barley. FEMS Microbiology Letters, 256, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Havis, N. D., Pastok, M., Pyzalski, S., & Oxley, S. J. P. (2006). Investigating the life cycle of Ramularia collo-cygni. Proceedings Crop Protection in Northern Britain, 2006, 219–223.

    Google Scholar 

  • Havis, N. D., Nyman, M., & Oxley, S. J. P. (2010). Potential of seed treatments to control Ramularia collo-cygni in barley. Proceedings Crop Protection Conference, 2010, 97–102.

    Google Scholar 

  • Heil, M., & Walters, D. R. (2009). Ecological consequences of plant defence signalling. Advances in Botanical Research, 51, 667–716.

    Article  CAS  Google Scholar 

  • Hollomon, D. W. (1984). A laboratory assay to determine the sensitivity of Rhynchosporium secalis to the fungicide triadimenol. Plant Pathology, 33, 65–70.

    Article  CAS  Google Scholar 

  • Hollomon, D. W., & Brent, K. J. (2009). Combating plant diseases – the Darwin connection. Pest Management Science, 65, 1156–1163.

    Article  PubMed  CAS  Google Scholar 

  • Home-Grown Cereals Authority (HGCA). (2004). Determining eyespot risk in winter wheat. Topic Sheet No. 80, HGCA, London.

  • Home-Grown Cereals Authority (HGCA). (2011). The HGCA barley disease management guide. Stoneleigh Park, Warwickshire, UK: HGCA.

    Google Scholar 

  • Hjortshøj, R. L., Stukenbrock, E. H., Ravhshøj, A. R., Nyman, M., Havis, N., Backes, G., Orabi, G., Pinnschmidt, H., & Stougaard, J. (2009). Genetic diversity in population of Ramularia collo-cygni assessed by AFLP fingerprint. Aspects of Applied Biology, 92, 97–101.

    Google Scholar 

  • Houston, B. R., & Ashworth, L. J. (1957). Newly determined races of the barley scald fungus in California. Phytopathology, 47, 525.

    Google Scholar 

  • Hughes, D. J., West, J. S., Atkins, S. D., Gladders, P., Jeger, M. J., & Fitt, B. D. L. (2011). Effects of disease control by fungicides on greenhouse gas emissions by UK arable crop production. Pest Management Science, 67, 1082–1092.

    CAS  Google Scholar 

  • Inglese, S. J., & Paul, N. D. (2006). Tolerance of Senecio vulgaris to infection and disease caused by native and alien rust fungi. Phytopathology, 96, 718–726.

    Article  PubMed  CAS  Google Scholar 

  • Ivandic, V., Walther, U., & Graner, A. (1998). Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theoretical and Applied Genetics, 97, 1235–1239.

    Article  CAS  Google Scholar 

  • Jackson, L. F., & Webster, R. K. (1976). Seed and grasses as possible sources of Rhynchosporium secalis for barley in California. Plant Disease Reporter, 60, 233–236.

    Google Scholar 

  • Jeger, M. J. (2000). Bottlenecks in IPM. Crop Protection, 19, 787–792.

    Article  Google Scholar 

  • Jones, D. R. (1990). Sensitivity of Rhynchosporium secalis to DMI fungicides. Proceedings Brighton Crop Protection Conference, 9c-6, 1135–1140.

    Google Scholar 

  • Jones, E.R.L., & Newton, A.C. (2001). Rhynchosporium on barley. UK cereal pathogen virulence survey 2000. Annual report. 77-86.

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, H. J. L., Neergard, E. D., & Smedegard-Petersen, V. (1993). Histological examination of the interaction between Rhynchosporium secalis and susceptible and resistant cultivars of barley. Physiological and Molecular Plant Pathology, 42, 345–358.

    Article  Google Scholar 

  • Jorgensen, L. N., Jensen, B., & Smedegaard-Petersen, V. (1997). Bion – a compound for disease control in cereal based on induced resistance. Proceedings of the 14th Danish Plant Protection Conference, 8, 35–48.

    Google Scholar 

  • Kari, A. G., & Griffiths, E. (1993). Components of partial resistance of barley to Rhynchosporium secalis, use of seedling tests to predict field resistance. Annals of Applied Biology, 123, 545–561.

    Article  Google Scholar 

  • Kay, J. G., & Owen, H. (1973). Transmission of Rhynchosporium secalis on barley grain. Transaction of the British Mycological Society, 60, 405–411.

    Article  Google Scholar 

  • Kendall, S. J., Hollomon, D. W., Cooke, L. R., & Jones, D. R. (1993). Changes in sensitivity to DMI fungicides in Rhynchosporium secalis. Crop Protection, 12, 357–362.

    Article  CAS  Google Scholar 

  • Kendall, S. J., Hollomon, D. W., Ishii, H., & Heaney, S. P. (1994). Characterization of benzimidazole resistant strains of Rhynchosporium secalis. Pesticide Science, 40, 175–181.

    Article  CAS  Google Scholar 

  • Kicherer, S., Backes, G., Walther, U., & Jahoor, A. (2000). Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 100, 881–888.

    Article  CAS  Google Scholar 

  • Kleeberg, H. (2007). Biological control agents: Requirements and potential in the market. Proceedings of the XVI International Plant Protection Congress, 15–18 October 2007, Glasgow, Scotland, 596–597.

  • Kølster, P., Munk, L., & Stølen, O. (1989). Disease severity and grain yield in barley multilines with resistance to powdery mildew. Crop Science, 29, 1459–1463.

    Article  Google Scholar 

  • Kramer, T., Gildemacher, B. H., van der Ster, M., & Parlevliet, J. E. (1980). Tolerance of spring barley cultivars to leaf rust, Puccinia hordei. Euphytica, 29, 209–216.

    Article  Google Scholar 

  • Kudsk, P. (2007). Crop protection in Europe at the crossroads: Challenges facing European farmers. Proceedings of the XVI International Plant Protection Congress, 15–18 October 2007, Glasgow, Scotland, 734–735.

  • Lagudah, E. S., Moullett, O., & Appels, R. (1997). Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome, 40, 659–665.

    Article  PubMed  CAS  Google Scholar 

  • Lardy, G. P., & Bauer, M. L. (1999). Feeding barley to beef cattle. EB-70. NDSU Extension Service.

  • Latacz-Lohmann, U. (2002). Path dependence, technological lock-in and the prospects for organic agriculture. Agricultural Economics Society Annual Conference, 8-11 April 2002, Aberystwyth.

  • Lawrence, G. J., Finnegan, E. J., Ayliffe, M. A., & Ellis, J. G. (1995). The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. The Plant Cell, 7, 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  • Leach, C. M. (1979). A Theoretical Consideration of the Epidemiology of Seed-borne Plant Pathogens (pp. 227–233). Londrina, Brazil: Seed Pathology Problems and progress. Proceedings of the First Latin American Workshop on Plant Pathology.

    Google Scholar 

  • Lehnackers, H., & Knogge, W. (1990). Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis. Canadian Journal of Botany, 68, 1953–1961.

    Google Scholar 

  • Leisova, L., Kucera, L., Minarikova, V., & Ovesna, J. (2005). AFLP-based PCR markers that differentiate spot and net forms of Pyrenophora teres. Plant Pathology, 54, 66–73.

    Article  CAS  Google Scholar 

  • Linde, C. C., Zala, M., Ceccarelli, S., & McDonald, B. A. (2003). Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genetics and Biology, 40, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Liu, D., Tao, W., Li, W., Wang, S., Chen, P., Cheng, S., & Gao, D. (2000). Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breeding, 119, 21–24.

    Article  CAS  Google Scholar 

  • Liu, Z., Ellwood, S. R., Oliver, R. P., & Friesen, T. L. (2011). Pyrenophora teres: profile of an increasingly damaging pathogen. Molecular Plant Pathology, 12, 1–19.

    Article  PubMed  Google Scholar 

  • Locke, T., & Phillips, A. N. (1995). The occurrence of carbendazim resistance in Rhynchosporium secalis on winter barley in England and Wales in 1992 and 1993. Plant Pathology, 44, 294–300.

    Article  Google Scholar 

  • Lockeretz, W. (1988). Open questions on sustainable agriculture. American Journal of Alternative Agriculture, 3, 174–181.

    Article  Google Scholar 

  • Looseley, M. E., Newton, A. C., Atkins, S. D., Fitt, B. D. L., Fraije, B., Thomas, W. T. B., Keith, R., Lynott, J., & Harrap, D. (2011). Genetic basis of control of Rhynchosporium secalis infection and symptom expression in barley. Euphytica. doi:10.1007/s10681-011-0485-z.

  • Lovell, D. J., Parker, S. R., Hunter, T., Royle, D. J., & Coker, R. R. (1997). Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathology, 46, 126–138.

    Article  Google Scholar 

  • Lovell, D. J., Parker, S. R., Hunter, T., Welham, S. J., & Nichols, A. R. (2004). Position of inoculum in the canopy affects the risk of septoria tritici blotch epidemics in winter wheat. Plant Pathology, 53, 11–21.

    Article  Google Scholar 

  • Magdoff, F. (2007). Ecological agriculture: Principles, practices and constraints. Renewable Agricultureand Food Systems, 22, 109–117.

    Article  Google Scholar 

  • Makepeace, J. C. (2006). The effect of the mlo mildew resistance gene on spotting diseases of barley. Norwich, UK: PhD Thesis, University of East Anglia.

    Google Scholar 

  • Mammadov, J. A., Liu, Z., Biyashev, R. M., Muehlbauer, G. J., & Maroof, M. A. S. (2006). Cloning, genetic and physical mapping of resistance gene analogs in barley (Hordeum vulgare L.). Plant Breeding, 125, 32–42.

    Article  CAS  Google Scholar 

  • Manisterski, J., & Anikster, Y. (1994). New resistance genes to the brown leaf rust, Puccinia hordei in wild barley from Israel. Barley Genetics Newsletter, 24, 102–103.

    Google Scholar 

  • McDermott, J. M., McDonald, B. A., Allard, R. W., & Webster, R. K. (1989). Genetic variability for pathogenicity, isozyme, ribosomal DNA and colony color variants in populations of Rhynchosporium secalis. Genetics, 122, 561–565.

    PubMed  CAS  Google Scholar 

  • McNeely, J. A., & Scherr, S. J. (2003). Ecoagriculture: Strategies for Feeding the World and Conserving Wild Biodiversity. Washington, DC: Island Press.

    Google Scholar 

  • Mercer, P., Ruddock, A., & Reavey, C. (2006). Problems facing the growing of organic cereals in N. Ireland. Proceedings Crop Protection in Northern Britain, 2006, 163–168.

    Google Scholar 

  • Mirlohi, A., Brueggeman, R., Drader, T., Nirmala, J., Steffenson, B. J., & Kleinhofs, A. (2008). Allele sequencing of the barley stem rust resistance gene Rpg1 identifies regions relevant to disease resistance. Phytopathology, 98, 910–918.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, A. F., & Walters, D. R. (2004). Potassium phosphate induces systemic protection in barley to powdery mildew infection. Pest Management Science, 60, 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, A. F., & Walters, D. R. (1995). Systemic protection in barley against powdery mildew using methyl jasmonate. Aspects of Applied Biology, 42, 323–326.

    Google Scholar 

  • Montgomery, D. C. (1997). Introduction to Statistical Quality Control (3rd ed.). New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Mundt, C. C. (1994). Use of host genetic diversity to control cereal diseases: Implications for rice blast. In R. S. Zeigler, S. A. Leong, & P. S. Teng (Eds.), Rice Blast Disease (pp. 293–308). London: CAB International.

    Google Scholar 

  • Mundt, C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40, 381–410.

    Article  PubMed  CAS  Google Scholar 

  • Newman, P. L., & Owen, H. (1985). Evidence of asexual recombination in Rhynchosporium secalis. Plant Pathology, 34, 338–40.

    Article  Google Scholar 

  • Newton, A. C. (1991). Isozyme variability in isolates of some facultative phytopathogenic fungi. Journal of Phytopathology, 131, 199–204.

    Article  CAS  Google Scholar 

  • Newton, A. C., & Thomas, W. T. B. (1992). The effect of specific and non-specific resistance in mixtures of barley genotypes on infection by mildew (Erysiphe graminis f.sp. hordei) and on yield. Euphytica, 59, 73–81.

    Google Scholar 

  • Newton, A. C., & Thomas, W. T. B. (1993). The interaction of either an effective or a defeated major gene with non-specific resistance on mildew infection (Erysiphe graminis f.sp. hordei) and yield in mixtures of barley. Journal of Phytopathology, 139, 268–274.

    Article  Google Scholar 

  • Newton, A. C., Ellis, R. P., Hackett, C. A., & Guy, D. C. (1997). The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathology, 46, 930–938.

    Article  Google Scholar 

  • Newton, A. C., Hackett, C. A., & Guy, D. C. (1998). Diversity and complexity of Erysiphe graminis f.sp. hordei collected from barley cultivar mixtures or barley plots treated with a resistance elicitor. European Journal of Plant Pathology, 104, 925–931.

    Article  Google Scholar 

  • Newton, A. C., Swanston, J. S., Guy, D. C., & Ellis, R. P. (1998). The effect of cultivar mixtures on malting quality in winter barley. Journal of the Institute of Brewing, 104, 41–45.

    Google Scholar 

  • Newton, A. C., Thomas, W. T. B., Guy, D. C., & Gaunt, R. E. (1998). The interaction of fertiliser treatment with tolerance to powdery mildew in spring barley. Field Crops Research, 55, 45–56.

    Article  Google Scholar 

  • Newton, A. C., Searle, J., Hackett, C. A., & Cooke, D. E. L. (2001). Variability in pathotype, aggressiveness, RAPD profile, and rDNA ITS1 sequences of UK isolates of Rhynchosporium secalis. Journal of Plant Disease and Protection, 108, 446–458.

    CAS  Google Scholar 

  • Newton, A. C., Guy, D. C., Nadziak, J., & Gacek, E. (2002). The effect of inoculum pressure, germplasm selection and environment on spring barley cultivar mixtures efficacy. Euphytica, 125, 325–335.

    Article  Google Scholar 

  • Newton, A. C., Swanston, J. S., & Guy, D. C. (2004). Enhanced durability and utility of genes for resistance by deployment in cultivar mixtures. In I. Tikhonovich, B. Lugtenberg, & N. Provorov (Eds.), Biology of Plant-Microbe Interactions, 4 (pp. 240–243). St Petersburg: Russia.

    Google Scholar 

  • Newton, A. C., Hackett, C. A., & Swanston, J. S. (2008). Analysing the contribution of component cultivars and cultivar combinations to malting quality, yield and disease in complex mixtures. Journal of the Science of Food and Agriculture, 88, 2142–2152.

    Article  CAS  Google Scholar 

  • Newton, A. C., & Guy, D. C. (2009). The effects of uneven, patchy cultivar mixtures on disease control and yield in winter barley. Field Crops Research, 110, 225–228.

    Article  Google Scholar 

  • Newton, A. C., Begg, G. S., & Swanston, J. S. (2009). Deployment of diversity for enhanced crop function. Annals of Applied Biology, 154, 309–322.

    Article  Google Scholar 

  • Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., & Daniell, T. J. (2010a). Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends in Microbiology, 18, 365–373.

    Article  PubMed  CAS  Google Scholar 

  • Newton, A. C., Bengough, A. G., Guy, D. C., McKenzie, B. M., & Hallett, P. D. (2010b). Interactions between barley cultivars and soil cultivation - effects on yield and disease. Proceedings Crop Protection in Northern Britain, 2010, 137–142.

    Google Scholar 

  • Newton, A. C., Gravouil, C., & Fountaine, J. M. (2010c). Managing the ecology of foliar pathogens: ecological tolerance in crops. Annals of Applied Biology, 157, 343–359.

    Article  Google Scholar 

  • Newton, A. C., Akar, T., Baresel, J. P., Bebeli, P. J., Bettencourt, E., Bladenopoulos, K. V., Czembor, J. H., Fasoula, D. A., Katsiotis, A., Koutis, K., Koutsika-Sotiriou, M., Kovacs, G., Larsson, H., de Carvalho, M. A. A. P., Rubiales, D., Russell, J., Dos Santos, T. M. M., & Patto, M. C. V. (2010d). Cereal landraces for sustainable agriculture, a review. Agronomy for Sustainable Development, 20, 237–269.

    Article  Google Scholar 

  • Newton, A. C., Flavell, A. J., George, T. S., Leat, P., Mullholland, B., Ramsay, L., Revoredo-Giha, C., Russell, J., Steffenson, B., Swanston, J. S., Thomas, W. T. B., Waugh, R., White, P. J., & Bingham, I. J. (2011). Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Security, 3, 141–178.

    Article  Google Scholar 

  • Newton, A. C., Guy, D. C., Bengough, A. G., Gordon, D. C., McKenzie, B. M., Sun, B., Valentine, T., & Hallett, P. D. (2012). Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crops Research, (accepted).

  • Newton, A. C., & Guy, D. C. (2011). Scale and spatial structure effects on the outcome of barley cultivar mixture trials for disease control. Field Crops Research, 123, 74–79.

    Article  Google Scholar 

  • Nevo, E. (2007). Evolution of wild wheat and barley and crop improvement: Studies at the Institute of Evolution. Israel Journal of Plant Sciences, 55, 251–262.

    Article  Google Scholar 

  • Niks, R. N., & Rubiales, D. (2002). Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 124, 201–216.

    Article  CAS  Google Scholar 

  • Nitzsche, W., & Hasselbach, J. (1983). Sortenmischungen statt Viellinien-Sorten. 1. Somergerste (Hordeum vulgare L.). Zeitschrift für Pfl anzenzuchtung, 90, 68–74.

    Google Scholar 

  • Oerke, E.-C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Office of Technology Assessment, U.S. Congress. (1990). A plague of locusts. Special Report, OTA-F-450. U.S. Washington, DC: GPO.

    Google Scholar 

  • Owen, H. (1958). Physiological races of Rhynchosporium secalis on cultivated barley. Transactions of the British Mycological Society, 46, 404–408.

    Google Scholar 

  • Owen, H. (1963). Physiological specialisation in Rhynchosporium secalis. Transactions of the British Mycological Society, 41, 99–108.

    Article  Google Scholar 

  • Oxley, S. J. P., Cooke, L. R., Black, L., Hunter, A., & Mercer, P. C. (2003). Management of rhynchosporium in different barley varieties and cropping systems. London: UK, Home-Grown Cereals Authority, Project Report. 315.

    Google Scholar 

  • Oxley, S.J.P., & Burnett, F. (2009). Barley disease control. SAC Technical Note TN619. ISBN 1 85482 873 8.

  • Oxley, S.J.P., & Havis, N.D. (2010). Managing Ramularia collo-cygni through varietal resistance, seed health and forecasting. Project Report No. 463, HGCA, London.

  • Parker, S. R., Welham, S., Paveley, N. D., Foulkes, J., & Scott, R. K. (2004). Tolerance of septoria leaf blotch in winter wheat. Plant Pathology, 53, 1–10.

    Article  Google Scholar 

  • Parry, D. (1990). Plant Pathology in Agriculture. Cambridge: Cambridge University Press.

    Google Scholar 

  • Paveley, N., Foulkes, J., Sylvester-Bradley, R., Parker, S., Lovell, D., Snape, J., Farrar, J., Neumann, S., Nason, J. & Ellerbrook, C. (2005). Maximising disease escape, resistance and tolerance in wheat through genetic analysis and agronomy. pp. 22, HGCA Project Report No. 358.

  • Paveley, N. D., Sylvester-Bradley, R., Scott, R. K., Craigon, J., & Day, W. (2001). Steps in predicting the relationship of yield on fungicide dose. Phytopathology, 91, 708–716.

    Article  PubMed  CAS  Google Scholar 

  • Paynter, B., & Hills, A. (2007). Mixing feed barley cultivars to decrease leaf diseases and increase grain yield. Proceedings 13th Australian Barley Technical Symposium, Perth, Western Australia.

  • Peterhansel, C., & Lahaye, T. (2005). Be fruitful and multiply: gene amplification inducing pathogen resistance. Trends in Plant Science, 10, 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Pickering, R. A., Hill, A. M., Michel, M., & TimmermanVaughan, G. M. (1995). The transfer of a powdery mildew resistance gene from Hordeum bulbosum L to barley (H. vulgare L) chromosome 2(21). Theoretical and Applied Genetics, 91, 1288–1292.

    Article  CAS  Google Scholar 

  • Pieterse, C. M. J., & Van Loon, L. C. (2007). Signalling cascades involved in induced resistance. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence: a sustainable approach to crop protection (pp. 65–88). Oxford: Blackwell Publishing.

    Chapter  Google Scholar 

  • Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B, 363, 447–465.

    Article  Google Scholar 

  • Rau, D., Attene, G., Brown, A. H. D., Nanni, L., Maier, F. J., Balmas, V., Saba, E., Schafer, W., & Papa, R. (2007). Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley ‘net blotch’ disease. Current Genetics, 51, 377–392.

    Article  PubMed  CAS  Google Scholar 

  • Reglinski, T., Newton, A. C., & Lyon, G. D. (1994a). Induction of resistance mechanisms in barley by yeast derived elicitors. Annals of Applied Biology, 124, 509–517.

    Article  Google Scholar 

  • Reglinski, T., Newton, A. C., & Lyon, G. D. (1994b). Assessment of the ability of yeast-derived elicitors to control powdery mildew in the field. Journal of Plant Diseases and Protection, 101, 1–10.

    CAS  Google Scholar 

  • Reignault, P., & Walters, D. (2007). Topical application of inducers for disease control. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence: a sustainable approach to crop protection (pp. 179–200). Oxford: Blackwell Publishing.

    Chapter  Google Scholar 

  • Reuveni, R., Dor, G., & Reuveni, M. (1998). Local and systemic control of powdery mildew (Leveillula taurica) on pepper plants by foliar spray of mono-potassium phosphate. Crop Protection, 17, 703–709.

    Article  CAS  Google Scholar 

  • Revoredo-Giha, C., Watts, D., & Leat, P. (2011). An analysis of marketing channels for local food in Scotland. SADC Rural Policy Centre, Research Briefing 2011/08. http://www.sac.ac.uk/mainrep/pdfs/localfoodmarketingchannels.pdf

  • Richardson, D. M. (2005). The registration process, its effect on active substance availability, and initiatives to reduce the impact on minor crops at both UK and EU level. Proceedings of the BCPC International Congress – Crop Science and Technology 2005. Vol., 1, 231–238.

    Google Scholar 

  • Richardson, K., Vales, M., Kling, J., Mundt, C., & Hayes, P. (2006). Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theoretical and Applied Genetics, 113, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Ridout, C. J., Skamnioti, P., Porritt, O., Sacristan, S., Jones, J. D., & Brown, J. K. (2006). Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. The Plant Cell, 18, 2402–2414.

    Article  PubMed  CAS  Google Scholar 

  • Robert, C., Fournier, C., Andrieu, B., & Ney, B. (2008). Coupling a 3D virtual wheat (Triticum aestivum) plant model with a Septoria tritici epidemic model (Septo3D): a new approach to investigate plant-pathogen interactions linked to canopy architecture. Functional Plant Biology, 35, 997–1013.

    Article  Google Scholar 

  • Roberts, R. S., & Lighthall, D. (1993). A developmental approach to the adoption of low-input farming practices. Leopold Center for Sustainable Agriculture, 2, 93–96.

    Google Scholar 

  • Rohe, M., Gierlich, A., Hermann, H., Hahn, M., Schmidt, B., Rosahl, S., & Knogge, W. (1995). The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO Journal, 14, 4168–4177.

    PubMed  CAS  Google Scholar 

  • Röling, N. (1988). Extension science: Information systems in agricultural development. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Roy, J. K., Smith, K. P., Muehlbauer, G. J., Chao, S. M., Close, T. J., & Steffenson, B. J. (2010). Association mapping of spot blotch resistance in wild barley. Molecular Breeding, 26, 243–256.

    Article  PubMed  Google Scholar 

  • Royle, D. J. (1994). Understanding and predicting epidemics: a commentary based on selected pathosystems. Plant Pathology, 43, 777–789.

    Article  Google Scholar 

  • Ruge, B., Linz, A., Pickering, R., Proeseler, G., Greif, P., & Wehling, P. (2003). Mapping of Rym14(Hb), a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theoretical and Applied Genetics, 107, 965–971.

    Article  PubMed  CAS  Google Scholar 

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., & Steiner, H. (1996). Systemic acquired resistance. The Plant Cell, 8, 1808–1819.

    Article  Google Scholar 

  • Salamati, S., Zhan, J., Burdon, J. J., & McDonald, B. A. (2000). The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathology, 90, 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Salamati, S., & Reitan, L. (2006). Ramularia collo-cygni on spring barley, an overview of its biology and epidemiology. In A. von Tiedemann, A. Schützendübel, & B. Koopman (Eds.), Abstracts of the First European Ramularia workshop (p. 13). Germany: Georg-August University Göttingen.

    Google Scholar 

  • Schafer, J. (1971). Tolerance to plant disease. Annual Review of Phytopathology, 9, 235–252.

    Article  Google Scholar 

  • Schein, R. D. (1958). Pathogenic specialization in Rhynchosporium secalis. Phytopathology, 48, 477–480.

    Google Scholar 

  • Schein, R. D. (1959). Resistance to Rhynchosporium secalis in the barley world collection. Phytopathology, 49, 549–50.

    Google Scholar 

  • Scherr, S. J., & McNeely, J. A. (2008). Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’ landscapes. Philosophical Transactions of the Royal Society B, 363, 477–494.

    Article  Google Scholar 

  • Scheurer, K. S., Friedt, W., Huth, W., Waugh, R., & Ordon, F. (2001). QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 103, 1074–1083.

    Article  CAS  Google Scholar 

  • Schweizer, P., Gees, R., & Mosinger, E. (1993). Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L) with the powdery mildew Erysiphe graminis f.sp. hordei. Plant Physiology, 102, 503–511.

    PubMed  CAS  Google Scholar 

  • Scott, D. B. (1991). Identity of Pyrenophora teres isolates causing net-type and spot type lesions on barley. Mycopathologia, 116, 29–35.

    Article  Google Scholar 

  • Selvin, S. (1996). Statistical Analysis of Epidemiologic Data (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Semar, M., Strobel, D., Koch, A., Klappach, K., & Stammler, G. (2007). Field efficacy of pyralosstrobin against populations of Pyrenophora teres containing the F129L mutation in the cytochrome b gene. Journal of Plant Diseases and Protection, 114, 117–119.

    CAS  Google Scholar 

  • Shen, Q. H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K., & Schulze-Lefert, P. (2003). Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. The Plant Cell, 15, 732–744.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q. H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ulker, B., Somssich, I. E., & Schulze-Lefert, P. (2007). Nuclear activity of MLa immune receptors links isolate-specific and basal disease-resistance responses. Science, 315, 1098–1103.

    Article  PubMed  CAS  Google Scholar 

  • Shipton, W. A., Boyd, W. J., & Alt, S. M. (1974). Scald of Barley. Review of Plant Pathology, 53, 839–861.

    Google Scholar 

  • Sierotzki, H., Wullschleger, J., & Gisi, U. (2000). Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f. sp. tritici field isolates. Pesticide Biochemistry and Physiology, 68, 107–112.

    Article  CAS  Google Scholar 

  • Skoropad, W. P. (1960). Barley scald in the prairie provinces of Canada. Commonwealth Phytopathology News, 6, 25–27.

    Google Scholar 

  • Smedegård-Petersen, V. (1971). Pyrenophora teres f. maculata f. nov. and Pyrenophora teres f. teres on barley in Denmark. Yearbook 1971 (pp. 124–144). Copenhagen: The Royal Veterinary and Agricultural University.

    Google Scholar 

  • Smedegard-Petersen, V. (1977). Respiration changes of barley leaves infected with Pyrenophora teres or affected by isolated toxins of the fungus. Physiological Plant Pathology, 10, 213–220.

    Article  CAS  Google Scholar 

  • Stadnik, M. J., & Buchenauer, H. (1999). Control of wheat diseases by a benzothiadiazole-derivative and modern fungicides. Journal of Plant Disease and Protection, 106, 466–475.

    CAS  Google Scholar 

  • Steffenson, B. J., Olivera, P., Roy, J. K., Jin, Y., Smith, K. P., & Muehlbauer, G. J. (2007). A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Australian Journal of Agricultural Research, 58, 532–544.

    Article  Google Scholar 

  • Stern, V. M., Smith, R. M., van den Bosch, R., & Hagen, K. S. (1959). The integrated control concept. Hilgardia, 29, 81–99.

    CAS  Google Scholar 

  • Sturz, A. V., Carter, M. R., & Johnston, H. W. (1997). A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil & Tillage Research, 41, 169–189.

    Article  Google Scholar 

  • Sunding, D. L., & Zilberman, D. (2001). The Agricultural Innovation Process: Research and Technology Adoption in a Changing Agricultural Sector. In B. Gardner & G. Rausser (Eds.), Handbook of Agricultural and Resource Economics. Amsterdam: North Holland.

    Google Scholar 

  • Swanston, J. S., Newton, A. C., Brosnan, J. M., & Broadhead, A. (2005). Determining the spirit yield of wheat varieties and variety mixtures. Journal of Cereal Science, 42, 127–134.

    Article  Google Scholar 

  • Swanston, J. S., Newton, A. C., Hoad, S., & Spoor, W. (2006). Variation across environments in patterns of water uptake and endosperm modifi cation in barley varieties and variety mixtures. Journal of the Science of Food and Agriculture, 86, 826–833.

    Article  CAS  Google Scholar 

  • Swets, J. A., Dawes, R. M., & Monahan, J. (2000). Better decisions through science. Scientific American, 283, 70–75.

    Article  Google Scholar 

  • Taggart, P. J., Cooke, L. R., & Mercer, P. C. (1994). Benzimidazole resistance in Rhynchosporium secalis in Northern Ireland and its implications for disease control. Fungicide Resistance, BCPC No, 60, 243–246.

    Google Scholar 

  • Taylor, D. C., & Dobbs, T. L. (1990). Sustainable Agriculture: Focus on producers. South Dakota Farm and Home Research, 40(1), 15–18.

    Google Scholar 

  • Thirugnanasambandam, A., Wright, K., Havis, N., Whisson, S., & Newton, A. C. (2011). Agrobacterium-mediated transformation of the barley pathogen Ramularia collo-cygni with fluorescent marker tags and live tissue imaging of infection development. Plant Pathology, 60, 929–937.

    Article  CAS  Google Scholar 

  • Thirugnanasambandam, A., Wright, K. M., Atkins, S. D., Whisson, S. C., & Newton, A. C. (2011). Infection of Rrs1 barley by an incompatible race of the fungus, Rhynchosporium secalis, expressing the green fluorescent protein. Plant Pathology, 60, 513–521.

    Article  Google Scholar 

  • Thomas, W. T. B., Powell, W., Waugh, R., Chalmers, K. J., Barua, U. M., Jack, P., Lea, V., Forster, B. P., Swanston, J. S., Ellis, R. P., Hanson, P. R., & Lance, R. C. M. (1995). Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 91, 1037–1047.

    Article  CAS  Google Scholar 

  • Ton, J., & Mauch-Mani, B. (2004). β-aminobutyric acid-induced resistance against necrotrophic pathogens is based upon ABA-dependent priming for callose. The Plant Journal, 38, 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Toojinda, T., Broers, L. H., Chen, X. M., Hayes, P. M., Kleinhofs, A., Korte, J., Kudrna, D., Leung, H., Line, R. F., Powell, W., Ramsay, L., Vivar, H., & Waugh, R. (2000). Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theoretical and Applied Genetics, 101, 580–589.

    Article  CAS  Google Scholar 

  • Tuohy, J. M., Jalli, M., Cooke, B. M., & Sullivan, E. O. (2006). Pathogenic variation in populations of Drechslera teres f. teres and D. teres F. maculate and differences in host cultivar responses. European Journal of Plant Pathology, 116, 177–185.

    Article  Google Scholar 

  • Tyrka, M., Perovic, D., Wardynska, A., & Ordon, F. (2008). A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding. Journal of Applied Genetics, 49, 127–134.

    Article  PubMed  Google Scholar 

  • Vanderplank, J. E. (1968). Disease resistance in plants. New York: Academic.

    Google Scholar 

  • Van Diepeningen, A. D., de Vos, O. J., Zelenev, V. V., Semenov, A. M., & van Bruggen, A. H. C. (2005). DGGE fragments oscillate with or counter to fluctuations of cultivable bacteria along wheat roots. Microbial Ecology, 50, 506–517.

    Article  PubMed  Google Scholar 

  • Van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J., & Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences USA, 103, 5602–5607.

    Article  CAS  Google Scholar 

  • van Leur, J. A. G., Ceccarelli, S., & Grando, S. (2006). Diversity for Disease Resistance in Barley Landraces from Syria and Jordan. Plant Breeding, 103, 324–335.

    Article  Google Scholar 

  • Vleeshouwers, V. G. A. A., Rietman, H., Krenek, P., Champouret, N., Young, C., Oh, S.-K., Wang, M., Bouwmeester, K., Vosman, B., Visser, R. G. F., Jacobsen, E., Govers, F., Kamoun, S., & Van der Vossen, E. A. G. (2008). Effector Genomics Accelerates Discovery and Functional Profiling of Potato Disease Resistance and Phytophthora Infestans Avirulence Genes. PLoS One, 3, e2875. doi:10.1371/journal.pone.0002875.

    Article  PubMed  CAS  Google Scholar 

  • Wallwork, H. (2007). The role of minimum disease resistance standards for the control of cereal diseases. Australian Journal of Agricultural Research, 58, 588–592.

    Article  Google Scholar 

  • Wallwork, H. (2009). The use of host plant resistance in disease control. In D. Walters (Ed.), Disease Control in Crops: biological and environmentally friendly approaches (pp. 122–141). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Walters, D. (2009). Controlling plant disease using biological and environmentally friendly approaches: making it work in practice. In D. Walters (Ed.), Disease Control in Crops (pp. 257–261). Oxford: Wiley Blackwell.

    Chapter  Google Scholar 

  • Walters, D. R. (2010). Plant Defense: warding off attack by pathogens, herbivores and parasitic plants. Oxford: Wiley-Blackwell.

    Book  Google Scholar 

  • Walters, D. R., Cowley, T., & Mitchell, A. F. (2002). Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. Journal of Experimental Botany, 53, 747–756.

    Article  PubMed  CAS  Google Scholar 

  • Walters, D., & Heil, M. (2007). Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 71, 3–17.

    Article  CAS  Google Scholar 

  • Walters, D. R., McRoberts, N., & Fitt, B. D. L. (2008). Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biological Reviews, 83, 79–102.

    Article  PubMed  Google Scholar 

  • Walters, D. R., Havis, N. D., & Oxley, S. J. P. (2008). Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiology Letters, 279, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Walters, D. R., Paterson, L., Walsh, D. J., & Havis, N. D. (2009). Priming for plant defense in barley provides benefits only under high disease pressure. Physiological and Molecular Plant Pathology, 73, 95–100.

    Article  CAS  Google Scholar 

  • Walters, D. R., Paterson, L., & Havis, N. D. (2010). Control of foliar diseases of spring barley using resistance elicitors. Proceedings Crop Protection Northern Britain, 2010, 91–96.

    Google Scholar 

  • Walters, D.R., Havis, N.D., Paterson, L., Taylor, J., & Walsh, D.J. (2011a). Cultivar effects on the expression of induced resistance in spring barley. Plant Disease, 95, 595–600.

    Google Scholar 

  • Walters, D. R., Paterson, L., Sablou, C., & Walsh, D. J. (2011). Existing infection with Rhynchosporium secalis compromises the ability of barley to express induced resistance. European Journal of Plant Pathology, 130, 73–82.

    Google Scholar 

  • Wenzel G., Frei U., Lübberstedt T., Mohler V. & Thümmler F. (2001) Plant breeding at the onset of the 3 rd millennium. Proc conf crop improvement at the XXI century. 3 July 2001, Radzikow, Poland, 13–25

  • Werner, K., Friedt, W., & Ordon, F. (2005). Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Molecular Breeding, 16, 45–55.

    Article  CAS  Google Scholar 

  • Whipps, J.M. (2007). Complex multitrophic interactions in the plant environment can affect disease biocontrol. Proceedings of the XVI International Plant Protection Congress, 15–18 October 2007, Glasgow, Scotland, 432–433.

  • Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C., & Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleuken-1 receptor. Cell, 78, 1101–1115.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, M.S. (2007). Regulatory innovation and the biopesticide industry. Proceedings of the XVI International Plant Protection Congress, 15–18 October 2007, Glasgow, Scotland, 600–601 .

  • Wiese, J., Bagy, M. K. K., & Schubert, S. (2003). Soil properties, but not plant nutrients (N, P, K) interact with chemically induced resistance against powdery mildew in barley. Journal of Plant Nutrition and Soil Science, 166, 379–384.

    Article  CAS  Google Scholar 

  • Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23, 251–273.

    Article  Google Scholar 

  • Wolfe, M. S. (1997). Variety mixtures: Concept and value. In: Wolfe MS, ed. Variety Mixtures in Theory and Practice. European Union Variety and Species Mixture working group of COST Action 817. Online at: http://www.scri.ac.uk/research/pp/pestanddisease/rhynchosporiumonbarley/otherwork/cropmixtures/varietymixtures .

  • Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S. P., Kovacs, G., Löschenberger, F., Miedaner, T., Østergård, H., & Lammerts van Bueren, E. T. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323–346.

    Article  Google Scholar 

  • Wu, H. L., Steffenson, B. J., Oleson, A. E., & Zhong, S. (2003). Genetic variation for virulence and RFLP markers in Pyrenophora teres. Canadian Journal of Plant Pathology, 25, 82–90.

    Article  CAS  Google Scholar 

  • Wu, Y. X., & von Tiedemann, A. (2001). Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pesticide Biochemistry and Physiology, 71, 1–10.

    Article  CAS  Google Scholar 

  • Xi, K., Turkington, T. K., Helm, J. H., & Bos, C. (2003). Pathogenic variation of Rhynchosporium secalis in Alberta. Canadian Journal of Plant Pathology, 24, 176–83.

    Article  Google Scholar 

  • Xi, K., Bos, C., Turkington, T. K., Xue, A. G., Burnett, P. A., & Juskiw, P. E. (2008). Interaction of net blotch and scald on barley. Canadian Journal of Plant Pathology, 30, 329–334.

    Article  Google Scholar 

  • Youcef-Benkada, M., Bendhamane, B. S., Barrault, A. A. S. Y. G., & Albertini, L. (1994). Effects of inoculation of barley inflorescences with Drechshlera teres upon the location of seed-borne inoculums and its transmission to seedlings as modified by temperature and soil moisture. Plant Pathology, 43, 350–355.

    Article  Google Scholar 

  • Yu, Y., Tomkins, J. P., Waugh, R., Frisch, D. A., Kudrna, D., Kleinhofs, A., Brueggeman, R. S., Muehlbauer, G. J., Wise, R. P., & Wing, R. A. (2000). A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theoretical and Applied Genetics, 101, 1093–1099.

    Article  CAS  Google Scholar 

  • Yuen, J., Twengström, E., & Sigvald, R. (1996). Calibration and verification of risk algorithms using logistic regression. European Journal of Plant Pathology, 102, 847–854.

    Article  Google Scholar 

  • Yun, S. J., Gyenis, L., Hayes, P. M., Matus, I., Smith, K. P., Steffenson, B. J., & Muehlbauer, G. J. (2005). Quantitative trait loci for multiple disease resistance in wild barley. Crop Science, 45, 2563–2572.

    Article  CAS  Google Scholar 

  • Zaffarano, P. L., McDonald, B. A., Zala, M., & Linde, C. C. (2006). Global hierarchical gene diversity analysis suggests the Fertile Crescent is not the center of origin of the barley scald pathogen Rhynchosporium secalis. Phytopathology, 96, 941–950.

    Article  PubMed  CAS  Google Scholar 

  • Zaffarano, P. L., McDonald, B. A., & Linde, C. C. (2011). Two new species of Rhynchosporium. Mycologia, 103, 195–202.

    Google Scholar 

  • Zhan, J., Fitt, B. D. L., Pinnschmidt, H. O., Oxley, S. J. P., & Newton, A. C. (2008). Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathology, 57, 1–14.

    Google Scholar 

  • Zhou, F., Kurth, J., Wei, F., Elliott, C., Valé, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R., & Schulze-Lefert, P. (2001). Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. The Plant Cell, 13, 337–350.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerli, L., Jakab, G., Métraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proceedings of the National Academy of Sciences USA, 97, 12920–12925.

    Article  CAS  Google Scholar 

  • Zimmerli, L., Metraux, J.-P., & Mauch-Mani, B. (2001). Β-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic pathogen Botrytis cinerea. Plant Physiology, 126, 517–523.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C. (2008). Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology, 20, 10–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Some of the work at SAC and JHI described in this paper was conducted as part of the Scottish Government-funded 'Sustainable Agriculture - Plants' programme on barley pathology (WP1.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale R. Walters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walters, D.R., Avrova, A., Bingham, I.J. et al. Control of foliar diseases in barley: towards an integrated approach. Eur J Plant Pathol 133, 33–73 (2012). https://doi.org/10.1007/s10658-012-9948-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-9948-x

Keywords

Navigation