Skip to main content
Log in

Modelling pathogen competition and displacement– Phytophthora infestans in Scandinavia

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Populations of Phytophthora infestans have displaced less fit populations in a number of regions, but not in Scandinavia. In order to study this process, a simple epidemic model was developed, based on the Lotka-Volterra model for competition. The model contains two epidemics, each with logistic growth of two separate populations that interact with each other in that they compete for the same resource base (the plant). In Scandinavia, epidemics from suspected oospore infections are thought to start earlier than those originating from tubers, so routines were added to allow the epidemics to start at different time points. A numerical solution to the model was developed using the deSolve package of the open-source statistical program ‘R’. The resulting model allows examination of the relative importance of different values for the apparent infection rates and starting parameters for the two sub-epidemics. If epidemics from oospore infections start earlier than those from tuber infections, the delay for epidemic initiation via tuber infection would require extremely high values of r in order for this population to dominate at the end of the season. This could be one reason for the lack of persistent clones in the Scandinavian Phytophthora infestans population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett, J. (1983). Estimating relative fitness in plant parasites: Some general problems. Phytopathology, 73(4), 510–512.

    Article  Google Scholar 

  • Brurberg, M. B., Elameen, A., Le, V. H., Naerstad, R., Hermansen, A., Lehtinen, A., Hannukkala, A., et al. (2011). Genetic analysis of Phytophthora infestans populations in the Nordic European countries reveals high genetic variability. Fungal Biology, 115, 335–342.

    Article  PubMed  Google Scholar 

  • Fry, W. E., Goodwin, S. B., Dyer, A. T., Matuszak, J., Drenth, A., Tooley, P., et al. (1993). Historical and recent migrations of Phytophthora infestans: Chronology, pathways, and implications. Plant Disease, 653–661.

  • Fry, W. E., Grünwald, N. J., Cooke, D., McLeod, A., Forbes, G. A., & Cao, K. (2009). Population genetics and population diversity of Phytophthora infestans. In Oomycete genetics and genomics: Diversity, Interactions and research tools (p. 139). Wiley-Blackwell.

  • Gilligan, C. A. (1990). Antagonistic interactions involving plant pathogens: Fitting and analysis of models to non-monotonic curves for population and disease dynamics. New Phytologist, 115(4), 649–665.

    Article  Google Scholar 

  • Grönberg, L., Andersson, B., & Yuen, J. (2012). Weed hosts can increase aggressiveness of phytophthora infestans on potato. Phytopathology. doi:10.1094/PHYTO-12-11-0326.

    PubMed  Google Scholar 

  • Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., & Rahkonen, A. (2007). Late-blight epidemics on potato in Finland, 1933–2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56(1), 167–176.

    Article  Google Scholar 

  • Heesterbeek, J., & Zadoks, J. (1987). Modelling pandemics of quarantine pests and diseases: problems and perspectives. Crop Protection, 6(4), 211–221.

    Article  Google Scholar 

  • Kadish, D., & Cohen, Y. (1988). Competition between metalaxyl-sensitive and metalaxyl-resistant isolates of Phytophthora infestans in the absence of metalaxyl. Plant Pathology, 37(4), 558–564. doi:10.1111/j.1365-3059.1988.tb02115.x.

    Article  Google Scholar 

  • Kato, M., Mizubuti, E. S., Goodwin, S. B., & Fry, W. E. (1997). Sensitivity to protectant fungicides and pathogenic fitness of clonal lineages of Phytophthora infestans in the United States. Phytopathology, 87(9), 973–978.

    Article  PubMed  CAS  Google Scholar 

  • Leach, J. E., Vera Cruz, C. M., Bai, J., & Leung, H. (2001). Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology, 39(1), 187–224.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, K., & Czochor, R. (1980). Theory of genetic interactions among populations of plants and their pathogens. Annual Review of Phytopathology, 18(1), 237–258.

    Article  Google Scholar 

  • Milgroom, M., Levin, S., & Fry, W. (1989). Population genetics theory and fungicide resistance. In K. J. Leonard & W. E. Fry (Eds.), Plant disease epidemiology (Vol. 2, pp. 340–367). Mc Graw Hill Publishing Company.

  • Montarry, J., Andrivon, D. D., Glais, I., Corbiere, R., Mialdea, G., & Delmotte, F. (2010). Microsatellite markers reveal two admixed genetic groups and an ongoing displacement within the French population of the invasive plant pathogen Phytophthora infestans. Molecular Ecology, 19(9), 1965–1977.

    Article  PubMed  CAS  Google Scholar 

  • Newton, M. R., Kinkel, L. L., & Leonard, K. J. (1997). Competition and density-dependent fitness in a plant parasitic fungus. Ecology, 78(6), 1774–1784.

    Google Scholar 

  • O’Hara, R. B., & Brown, J. K. M. (1996). Immigration of the barley mildew pathogen into field plots of barley. Plant Pathology, 45(6), 1071–1076.

    Article  Google Scholar 

  • Skylakakis, G. (1980). Estimating parasitic fitness of plant pathogenic fungi: A theoretical contribution. Phytopathology, 70, 696–698.

    Article  Google Scholar 

  • Smart, C., & Fry, W. (2001). Invasions by the late blight pathogen: Renewed sex and enhanced fitness. Biological Invasions, 3(3), 235–243.

    Article  Google Scholar 

  • Tilman, D. (2007). Interspecific competition and multispecies coexistence. In R. May & A. McLean (Eds.), Theoretical ecology: Principles and applications (p. 84). USA: Oxford University Press.

    Google Scholar 

  • van den Bosch, F., & Gilligan, C. A. (2008). Models of fungicide resistance dynamics. Annual Review of Phytopathology, 46, 123–147.

    Article  PubMed  Google Scholar 

  • Vanderplank, J. (1963). Plant diseases: Epidemics and control. New York and London: Academic Press.

    Google Scholar 

  • Weber, G. E., Gülec, S., & Kranz, J. (1994). Interactions between Erysiphe graminis and Septoria nodorum on wheat. Plant Pathology, 43(1), 158–163. doi:10.1111/j.1365-3059.1994.tb00565.x.

    Article  Google Scholar 

  • Widmark, A. K., Andersson, B., Cassel-Lundhagen, A., Sandström, M., & Yuen, J. E. (2007). Phytophthora infestans in a single field in southwest Sweden early in spring: Symptoms, spatial distribution and genotypic variation. Plant Pathology, 56(4), 573–579.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Yuen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(R 3.14 KB)

(R 2.95 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuen, J.E. Modelling pathogen competition and displacement– Phytophthora infestans in Scandinavia. Eur J Plant Pathol 133, 25–32 (2012). https://doi.org/10.1007/s10658-011-9933-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9933-9

Keywords

Navigation