Skip to main content
Log in

Soil type, management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The impact of soil type, long-term soil management, and short-term fertility input strategies on the suppressiveness of soils against soil-borne (Ocimum basilicumRhizoctonia solani, Lepidium sativumPythium ultimum) as well as air-borne (Lycopersicon esculentumPhytophthora infestans, Arabidopsis thalianaHyaloperonospora parasitica) diseases was studied. Soils from field trials established in five European sites with contrasting pedo-climatic conditions were examined. Sites included (i) a long-term management field trial comparing organic and conventional farming systems (DOK-trial, Therwil, Switzerland) (ii) a short-term fertility input field trial comparing mineral and organic matter fertilisation regimes (Bonn (BON), Germany) (iii) two short-term fertility input field trials (Stockbridge (STC) and Tadcaster (TAD), UK) comparing the impact of farmyard manure, composted farmyard manure, and chicken manure pellet amendements and (iv) soil from a site used as a reference (Reckenholz (REC), Switzerland). Soil type affected disease suppressiveness of the four pathosystems signficantly, indicating that soils can not only affect the development of soil-borne, but also the resistance of plants to air-borne diseases at relevant levels. Suppressiveness to soil- and air-borne diseases was shown to be affected by soil type, but also by long-term management as well as short-term fertility inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press Limited.

    Google Scholar 

  • Berner, A., Gloor, S., Fuchs, J. G., Tamm, L., & Mäder, P. (2002). Healthy soils - healthy plants. Paper presented at the 14th IFOAM Organic World Congress, Victoria, Canada.

  • Blume, H.-P., Deller, B., Leschber, R., Paetz, A., Schmidt, S., & Wilke, B.-M. (2000). Handbuch der Bodenuntersuchung. Berlin: Beuth.

    Google Scholar 

  • Bossio, D. A., Scow, K. M., Gunpala, N., & Graham, K. J. (1998). Determination of soil microbial communities: effect of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837–842.

    Article  CAS  Google Scholar 

  • Chu, H., Lin, X., Fujii, T., Morimoto, S., Yagi, K., Hu, J., et al. (2007). Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 39, 2971–2976.

    Article  CAS  Google Scholar 

  • De Meyer, G., & Höfte, M. (1997). Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology, 87, 588–593.

    Article  PubMed  Google Scholar 

  • De Meyer, G., Bigirimana, J., Elad, Y., & Höfte, M. (1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104, 279–286.

    Article  Google Scholar 

  • De Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Métraux, J.-P., & Höfte, M. (1999). Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Molecular Plant Microbe Interactions, 12, 450–458.

    Article  PubMed  Google Scholar 

  • Doran, J. W., Sarrantonio, M., & Lieberg, M. A. (1996). Soil health and sustainability. Advances in Agronomy, 56, 1–54.

    Article  CAS  Google Scholar 

  • Fuchs, J. G. (2002). Practical use of quality compost for plant health and vitality improvement. In H. Insam, N. Riddech, & S. Klammer (Eds.), Microbiology of composting (pp. 435–444). Heidelberg: Springer Verlag.

    Google Scholar 

  • Garbeva, P., Van Veen, J. A., & Van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243–270.

    Article  CAS  PubMed  Google Scholar 

  • Govaerts, B., Mezzalama, M., Unno, Y., Sayre, D. D., Luna-Guido, M., Vanherck, K., et al. (2007). Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology, 37, 18–30.

    Article  Google Scholar 

  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Hoitink, H. A. J., Van Doren, D. M. J., & Schmitthenner, A. F. (1977). Suppression of Phytophthora cinnamomi in a composted hardwood bark potting medium. Phytopathology, 67, 561–565.

    Article  Google Scholar 

  • Iavicoli, A., Boutet, E., Buchala, A., & Métraux, J. P. (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant Microbe Interactions, 10, 851–858.

    Article  Google Scholar 

  • Inbar, E., Green, S. J., Hadar, Y., & Minz, D. (2005). Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microbial Ecology, 50, 73–81.

    Article  PubMed  Google Scholar 

  • Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., & Insam, H. (2006). Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biology & Biochemistry, 38, 1092–1100.

    Article  CAS  Google Scholar 

  • Jäggi, W. (1976). Die Bestimmung der CO2-Bildung als Mass der bodenbiologischen Aktivität. Schweizerische Landwirtschaftliche Forschung, 15, 371–380.

    Google Scholar 

  • Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., & Steinberg, C. (2007). Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biology and Biochemistry, 39, 1–23.

    Article  CAS  Google Scholar 

  • Kandeler, E. (1993). Bestimmung der Aggregatstabilität. In F. Schinner, R. Öhlinger, E. Kandeler, & R. Margesin (Eds.), Bodenbiologische Arbeitsmethoden (pp. 351–355). Berlin: Springer.

    Google Scholar 

  • Kloepper, J. E., Rodriguez-Ubana, R., Zehnder, G. W., Murphy, J. F., Sikora, E., & Fernandez, C. (1999). Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology, 28, 21–26.

    Article  Google Scholar 

  • Knudsen, I. M. B., Larsen, K. M., Jensen, D. F., & Hockenhull, J. (2002). Potential suppressiveness of different field soils to Pythium damping-off of sugar beat. Applied Soil Ecology, 21, 119–129.

    Article  Google Scholar 

  • Litterick, A. M., Harrier, L., Wallace, C., Watson, C. A., & Wood, M. (2004). The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production - A review. Critical Reviews in Plant Sciences, 23, 453–479.

    Article  Google Scholar 

  • Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.

    Article  PubMed  Google Scholar 

  • Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Jossi, W., Widmer, F., et al. (2006). The DOK experiment (Switzerland). In J. Raupp, C. Pekrun, M. Oltmanns, & U. Köpke (Eds.), Long-term field experiments in organic farming (pp. 41–58). Bonn: Koester.

    Google Scholar 

  • Mehlich, A. (1984). Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416.

    Article  CAS  Google Scholar 

  • Menzies, J. G. (1959). Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology, 49, 648–652.

    Google Scholar 

  • Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C., & Steinberg, C. (2006). Response of soil microbial communities to compost amendments. Soil Biology & Biochemistry, 38, 460–470.

    Article  Google Scholar 

  • Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E., Van Pelt, J. A., & Van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 8, 1225–1237.

    Article  CAS  PubMed  Google Scholar 

  • Press, C. M., Wilson, M., Tuzun, S., & Kloepper, J. W. (1997). Salicylic acid produced by Serratia marcescens 90–166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Molecular Plant-Microbe Interactions, 10, 761–768.

    Article  CAS  Google Scholar 

  • Rotenberg, D., Joshi, R., Benitez, M.-S., Chapin, L. G., Camp, A., Zumpetta, C., et al. (2007). Farm management effects on rhizosphere colonization by native populations of 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. and their contributions to crop health. Phytopathology, 97, 756–766.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, C.-M., Hu, C.-H., Reddy, M. S., & Kloepper, J. E. (2003). Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 160, 413–420.

    Article  CAS  Google Scholar 

  • Serra-Wittling, C., Houot, S., & Alabouvette, C. (1996). Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biology & Biochemistry, 28, 1207–1214.

    Article  CAS  Google Scholar 

  • Shipton, P. J., Cook, R. J., & Sitton, J. W. (1973). Occurrence and transfer of a biological factor in soil that suppresses take-all of wheat in Eastern Washington. Phytopathology, 63, 511–517.

    CAS  Google Scholar 

  • Stutz, E. W., Défago, G., & Kern, H. (1986). Naturally occurring fluorescent Pseudomonads involved in suppression of black root rot of tobacco. Phytopathology, 76, 181–185.

    Article  Google Scholar 

  • Tamm, L. (2001). Organic agriculture: development and state of the art. Journal of Environmental Monitoring, 3, 92–96.

    Article  Google Scholar 

  • Theodore, M., & Toribio, J. A. (1995). Suppression of Pythium aphanidermatum in composts prepared from sugarcane factory residues. Plant and Soil, 177, 219–223.

    Article  CAS  Google Scholar 

  • Thuerig, B., Fliessbach, A., Berger, N., Fuchs, J., Kraus, N., Mahlberg, N., et al. (2009). Re-establishment of suppressiveness to soil- and air-borne diseases by re-inoculation of soil microbial communities. Soil Biology & Biochemistry,

  • Vallad, G. E., Cooperband, L., & Goodman, R. M. (2003). Plant foliar disease suppression mediated by composted forms of paper mill residuals exhibits molecular features of induced resistance. Physiological and Molecular Plant Pathology, 63, 65–77.

    Article  CAS  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Van Elsas, J. D., Garbeva, P., & Salles, J. (2002). Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 13, 29–40.

    Article  PubMed  Google Scholar 

  • Van Loon, L. C., & Bakker, A. H. M. (2005). Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 39–66). Dordrecht: Springer.

    Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  PubMed  Google Scholar 

  • Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van’T Westende, Y. A. M., Hartog, F., & Van Loon, L. C. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant-Microbe Interactions, 10, 716–724.

    Article  PubMed  Google Scholar 

  • Widmer, F., Fliessbach, A., Laczko, E., Schulze-Aurich, J., & Zeyer, J. (2001). Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and Biolog™-analyses. Soil Biology & Biochemistry, 33, 1029–1036.

    Article  CAS  Google Scholar 

  • Wiseman, B. M., Neate, S. M., Keller, K. O., & Smith, S. E. (1996). Suppression of Rhizoctonia solani anastomosis group 8 in Australia and its biological nature. Soil Biology & Biochemistry, 28, 727–732.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the European Community financial participation under the Sixth Framework Programme for Research, Technological Development and Demonstration Activities, for the Integrated Project QUALITYLOWINPUTFOOD, FP6-FOOD-CT-2003-506358. We are grateful to Sabine Rattler, Bonn, and many students who helped us in soil sampling and preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucius Tamm.

Additional information

Lucius Tamm and Barbara Thürig contributed equally to the publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamm, L., Thürig, B., Bruns, C. et al. Soil type, management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases. Eur J Plant Pathol 127, 465–481 (2010). https://doi.org/10.1007/s10658-010-9612-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9612-2

Keywords

Navigation