Skip to main content
Log in

Alternative splicing and genetic diversity of the white collar-1 (wc-1) gene in cereal Phaeosphaeria pathogens

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The white collar-1 (wc-1) gene encodes an important light-responsive protein (wc-1) that maintains circadian clocks and controls numerous light-dependent reactions including sporulation in ascomycete fungi. The structure and expression of the wc-1 gene in wheat-biotype Phaeosphaeria nodorum (PN-w) was studied. It was shown that the full-size (3,353 bp in length) wc-1 gene in PN-w contained 4 introns in which introns 1 and 2 were flanked by GC-AG splice borders and were spliced constitutively. However, introns 3 and 4 of the wc-1 gene were alternatively spliced. As the result of alternative splicing (AS), six transcript variants were identified, encoding different lengths of deduced polypeptides (from 1,044 to 1,065aa). Ratios of the wc-1 gene transcript variants in the RNA population were the same in the sporulated and non-sporulated PN-w isolate Sn37-1 and the sporulated PN-w isolate S-79-1, grown under light/dark conditions. The AS of the wc-1 gene may control various light-dependent reactions in PN-w, which leads to diverse morphological, physiological and pathological characters for pathogen infection and spread. Based on the nucleotide and deduced amino acid sequences, the wc-1 gene in cereal Phaeosphaeria pathogens was diverse. It appeared that the deduced wc-1 polypeptide sequences of P. avenaria f. sp. avenaria (Paa), P. avenaria f. sp. triticea (Pat1 and Pat3) and barley biotype P. nodorum (PN-b) were more closely related than PN-w and Phaeosphaeeria sp. (P-rye) from Poland. Based on the wc-1 deduced polypeptide sequences, P. avenaria f. sp. triticea (Pat2) from foxtail barley (Hordeum jubatum L.) was evolutionary well separated from the other cereal Phaeosphaeria pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi, M., Hornig, H., & Weissmann, C. (1987). 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice region, not by the conserved 5′ GU. Cell, 50, 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Ballario, P., Vittorioso, P., Magrelli, A., Talora, C., Cabibbo, A., & Macino, G. (1996). White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. The EMBO Journal, 15, 1650–1657.

    CAS  PubMed  Google Scholar 

  • Ballario, P., Talora, C., Galli, D., Linden, H., & Macino, G. (1998). Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Molecular Microbiology, 29, 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 72, 291–336. doi:10.1146/annurev.biochem.72.121801.161720.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, P., Yang, Y., Wang, L., He, Q., & Liu, Y. (2003). White collar-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. The Journal of Biological Chemistry, 278, 3801–3808. doi:10.1074/jbc.M209592200.

    Article  CAS  PubMed  Google Scholar 

  • Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448, 666–671. doi:10.1038/nature06006.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H. S., & Howe, G. A. (2009). A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the jasmonate ZIM-domain protein JAZ10 in Arabidopsis. The Plant Cell, 21, 131–145. doi:10.1105/tpc.108.064097.

    Article  CAS  PubMed  Google Scholar 

  • Cooke, B. M., & Jones, D. G. (1970). The effect of near-ultraviolet irradiation and agar medium on the sporulation of Septoria nodorum and S. tritici. Transactions of the British Mycological Society, 54, 221–226.

    Article  Google Scholar 

  • Crosthwaite, S. K., Dunlap, J. C., & Loros, J. J. (1997). Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science, 276, 763–769. doi:10.1126/science.276.5313.763.

    Article  CAS  PubMed  Google Scholar 

  • Devireddy, L. R., & Jones, C. (1998). Alternative splicing of the latency-related transcript of bovine herpesvirus 1 yields RNAs containing unique open reading frames. Journal of Virology, 72, 7294–7301.

    CAS  PubMed  Google Scholar 

  • Fortwendel, J. R., Panepinto, J. C., Seitz, A. E., Askew, D. S., & Rhodes, J. C. (2004). Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genetics and Biology, 41, 129–139. doi:10.1016/j.fgb.2003.10.004.

    Article  CAS  PubMed  Google Scholar 

  • House, A. E., & Lynch, K. W. (2008). Regulation of alternative splicing: more than just the ABCs. The Journal of Biological Chemistry, 283, 1217–1221. doi:10.1074/jbc.R700031200.

    Article  CAS  PubMed  Google Scholar 

  • Iida, Y. (1990). Quantification analysis of 5′-splice signal sequences in mRNA precursors. Mutations in 5′-splice signal sequence of human β-globin gene and β-thalassemia. Journal of Theoretical Biology, 145, 523–533.

    Article  CAS  PubMed  Google Scholar 

  • Káldi, K., González, B. H., & Brunner, M. (2006). Transcriptional regulation of the Neurospora circadian clock gene wc-1 affects the phase of circadian output. EMBO Reports, 7, 199–204. doi:10.1038/sj.embor.7400595.

    Article  PubMed  Google Scholar 

  • Kim, E., Magen, A., & Ast, G. (2006). Different levels of alternative splicing among eukaryotes. Nucleic Acids Research, 35, 125–131. doi:10.1093/nar/gkl924.

    Article  PubMed  Google Scholar 

  • Kupfer, D. M., Drabenstot, S. D., Buchanan, K. L., Lai, H., Zhu, H., Dyer, D. W., et al. (2004). Introns and splicing elements of five diverse fungi. Eukaryotic Cell, 3, 1088–1100. doi:10.1128/EC.3.5.1088-1100.2004.

    Article  PubMed  Google Scholar 

  • Lee, K., Dunlap, J. C., & Loros, J. J. (2003). Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa. Genetics, 163, 103–114.

    CAS  PubMed  Google Scholar 

  • Lopez, A. J. (1998). Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annual Reviews of Genetics, 32, 279–305.

    Article  CAS  Google Scholar 

  • Malkus, A., Reszka, E., Chang, C. J., Arseniuk, E., Chang, P. F. L., & Ueng, P. P. (2005). Sequence diversity of β-tubulin (tubA) gene in Phaeosphaeria nodorum and P. avenaria. FEMS Microbiology Letters, 249, 49–56. doi:10.1016/j.femsle.2005.05.049.

    Article  CAS  PubMed  Google Scholar 

  • Mount, S. M. (1982). A catalogue of splice junction sequences. Nucleic Acids Research, 10, 459–472.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz, M. J., Santangelo, M. S. P., Paronetto, M. P., de la Mata, M., Pelisch, F., Boireau, S., et al. (2009). DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell, 137, 708–720. doi:10.1016/j.cell.2009.03.010.

    Article  PubMed  Google Scholar 

  • Nourani, A., Papajova, D., Delahodde, A., Jacq, C., & Subik, J. (1997). Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain. Molecular and General Genetics, 256, 397–405. doi:10.1007/s004380050583.

    Article  CAS  PubMed  Google Scholar 

  • Ogura, K., Choudhuri, S., & Klaassen, C. D. (2001). Genomic organization and tissue-specific expression of splice variants of mouse organic anion transporting polypeptide 2. Biochemical and Biophysical Research Communications, 281, 431–439. doi:10.1006/bbrc.2001.4387.

    Article  CAS  PubMed  Google Scholar 

  • Prade, R. A., & Timberlake, W. E. (1993). The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. The EMBO Journal, 12, 2439–2447.

    CAS  PubMed  Google Scholar 

  • Reszka, E., Chung, K. R., Tekauz, A., Malkus, A., Arseniuk, E., Krupinsky, J. M., et al. (2005). Presence of β-glucosidase (bgl1) gene in Phaeosphaeria nodorum and Phaeosphaeria avenaria f. sp. triticea. Canadian Journal of Botany, 83, 1001–1014. doi:10.1139/B05-052.

    Article  CAS  Google Scholar 

  • Romfo, C. M., Alvarez, C. J., van Heeckeren, W. J., Webb, C. J., & Wise, J. A. (2000). Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe. Molecular and Cellular Biology, 20, 7955–7970.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Solomon, P. S., Tan, K. C., & Oliver, R. P. (2005). Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Molecular Plant-Nicrobe Interactions, 18, 110–115. doi:10.1094/MPMI-18-0110.

    Article  CAS  Google Scholar 

  • Stankovich, M., Platt, A., Caddick, M. X., Langdon, T., Shaffer, P. M., & Arst, H. N., Jr. (1993). C-terminal truncation of the transcriptional activator encoded by areA in Aspergillus nidulans results in both loss-of-function and gain-of-function phenotypes. Molecular Microbiology, 7, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Teakle, G. R., & Gilmartin, P. M. (1998). Two forms of type IV zinc-finger motif and their kingdom-specific distribution between the flora, fauna and fungi. Trends in Biochemical Sciences, 23, 100–102.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, K. W., Tseng, H. C., & Lin, W. C. (2008). Two wobble-splicing events affect ING4 protein subnuclear localization and degradation. Experimental Cell Research, 314, 3130–3141. doi:10.1016/j.yexcr.2008.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Ueng, P. P., Reszka, E., Chung, K. R., Arseniuk, E., & Krupinsky, J. M. (2003). Comparison of glyceraldehyde-3-phosphate dehydrogenase genes in Phaeosphaeria nodorum and P. avenaria species. Plant Pathology Bulletin, 12, 255–268.

    CAS  Google Scholar 

  • Vidaud, M., Gattoni, R., Stevenin, J., Vidaud, D., Amselem, S., Chibani, J., et al. (1989). A 5′ splice-region G→C mutation in exon 1 of the human β-globin gene inhibits pre-mRNA splicing: a mechanism for β+-thalassemia. Proceedings of the National Academy of Sciences of the USA, 86, 1041–1045.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. L., Malkus, A., Zuzga, S. M., Chang, P. F. L., Cunfer, B. M., Arseniuk, E., et al. (2007). Diversity of the trifunctional histidine biosynthesis gene (his) in cereal Phaeosphaeria species. Genome, 50, 595–609. doi:10.1139/G07-038.

    Article  CAS  PubMed  Google Scholar 

  • Webb, C. J., Romfo, C. M., van Heeckeren, W. J., & Wise, J. A. (2005). Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin. Genes & Development, 19, 242–254.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author (PPU) is indebted to Barry M. Cunfer, Emeritus Professor of the University of Georgia and Gregory E. Shaner, Emeritus Professor of Purdue University, for their career-long inspiration, guidance and collaboration on research in cereal Stagonospora diseases. We also thank Rosemarie Hammond of the USDA-ARS for reviewing the manuscript. This research was supported in part by Department of International Affairs, Council of Agriculture, Executive Yuan, Taiwan under grant numbers 97AS-4.1.2-IC-I1(6) and 98AS-4.1.1-IC-I1(1), by the Ministry of Education, Taiwan, under the ATU plan, and by National Chung Hsing University, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pi-Fang Linda Chang or Peter P. Ueng.

Additional information

Ericka Yen-Hsin Chiu and Ying-Hong Lin contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, E.YH., Lin, YH., Wu, W. et al. Alternative splicing and genetic diversity of the white collar-1 (wc-1) gene in cereal Phaeosphaeria pathogens. Eur J Plant Pathol 127, 351–363 (2010). https://doi.org/10.1007/s10658-010-9602-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9602-4

Keywords

Navigation