Skip to main content

Advertisement

Log in

Comparison of mycelial proteomes of two Verticillium albo-atrum pathotypes from hop

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Verticillium wilt diseases caused by Verticillium spp. are known in many important crops and can seriously threaten their production. We studied Verticillium albo-atrum by comparative analysis of the proteome of four hop isolates, classified by the severity of wilt symptoms as mild and lethal pathotypes, from two geographic origins. A two-dimensional electrophoresis reference map of mycelium proteins was first established, resolving up to 650 protein spots on Coomassie-stained gels in a range of pH 4–7 and MW 14 – 116 kDa. The average coefficient of variance for the 268 matched protein spots was 16% and 15%, respectively, for technical and biological variability. Principal component analysis (PCA) discriminated the geographic origin of the isolates and between the two pathotypes and showed a closer relationship among English isolates than Slovene ones. The two-dimensional electrophoresis patterns of one mild (PG1) with one lethal pathotype (PG2) from Slovenia and one mild (M) with one lethal pathotype (PV1) from England were compared. A total of 27 and 30 spots were found differentially expressed between the pathotypes, which were analysed by tandem mass spectrometry. Fifty-three proteins were identified, of which 17 matched proteins with annotated functions. The lethal pathotypes showed increased expression of peroxiredoxine and ascorbate peroxidase, a higher level of cytoskeleton components and regulators, and a higher rate of protein synthesis and energy metabolism. These results reveal differences in the expression level of the identified proteins between the two pathotypes and are discussed in relation to virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aisif, A. R., Oellerich, M., Amstrong, V. W., Riemenschneider, B., Monod, M., & Reichard, U. (2006). Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. Journal of Proteome Research, 5, 954–962. doi:10.1021/pr0504586.

    Article  Google Scholar 

  • Beckman, C. H. (1987). The nature of wilt disease in plants. St Paul, MN: The American Phytopathological Society.

    Google Scholar 

  • Clarkson, J. M., & Heale, J. B. (1985). Pathogenicity and colonization studies on wild-type and auxotrophic isolates of Verticillium albo-atrum from hop. Plant Pathology, 34, 119–128. doi:10.1111/j.1365-3059.1985.tb02768.x.

    Article  Google Scholar 

  • Cordin, O., Banroques, J., Tanner, N. K., & Linder, P. (2006). The DEAD-box protein family of RNA helicases. Gene, 367, 17–37. doi:10.1016/j.gene.2005.10.019.

    Article  PubMed  CAS  Google Scholar 

  • Ebstrup, T., Saalbach, G., & Egsgaard, H. (2005). A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics, 5, 2839–2848. doi:10.1002/pmic.200401173.

    Article  PubMed  CAS  Google Scholar 

  • Engelhard, A. W. (1957) Host index of Verticillium albo-atrum Reinke and Berth, (including Verticillium dahliae Kleb.). In: Supplement to Plant Disease Reporter No. 244, pp. 23-49.

  • Fernandez-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I., Carbu, M., Camafeita, E., et al. (2006). Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics, 6, S88–S96. doi:10.1002/pmic.200500436.

    Article  PubMed  Google Scholar 

  • Fernandez-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I., Carbu, M., Camafeita, E., et al. (2007). Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Archives of Microbiology, 187, 207–215. doi:10.1007/s00203-006-0188-3.

    Article  PubMed  CAS  Google Scholar 

  • Fradin, E. F., & Thomma, B. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7, 71–86. doi:10.1111/j.1364-3703.2006.00323.x.

    Article  CAS  Google Scholar 

  • Gold, J., & Robb, J. (1995). The role of the coating response in Craigella tomatoes infected with Verticillium dahliae, race-1 and race-2. Physiological and Molecular Plant Pathology, 47, 141–157. doi:10.1006/pmpp.1995.1048.

    Article  Google Scholar 

  • Harris, R. V. (1927). A wilt disease of hops. In: East Malling Research Station Annual Report for 1925, Supplement II. pp. 92–93.

  • Heinz, R., Lee, S. W., Saparno, A., Nazar, R. N., & Robb, J. (1998). Cyclical systemic colonization in Verticillium-infected tomato. Physiological and Molecular Plant Pathology, 52, 385–396. doi:10.1006/pmpp.1998.0163.

    Article  Google Scholar 

  • Herbert, B. R., Grinyer, J., McCarthy, J. T., Isaacs, M., Harry, E. J., Nevalainen, H., et al. (2006). Improved 2-DE of microorganisms after acidic extraction. Electrophoresis, 27, 1630–1640. doi:10.1002/elps.200500753.

    Article  PubMed  CAS  Google Scholar 

  • Jamnik, P., Radisek, S., Javornik, B., & Raspor, P. (2006). 2-D Separation of Verticillium albo-atrum proteins. Acta Agriculturae Slovenica, 87, 455–460.

    CAS  Google Scholar 

  • Jorge, I., Navarro, R. M., Lenz, D., Ariza, D., Porras, C., & Jorrin, J. (2005). The Holm Oak leaf proteome: Analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity search. Proteomics, 5, 222–234. doi:10.1002/pmic.200400893.

    Article  PubMed  CAS  Google Scholar 

  • Keyworth, W. G. (1942). Verticillium wilt of the hop (Humulus lupulus). The Annals of Applied Biology, 29, 346–357. doi:10.1111/j.1744-7348.1942.tb06138.x.

    Article  CAS  Google Scholar 

  • Kim, Y., Nandakumar, M. P., & Marten, M. R. (2007). Proteomics of filamentous fungi. Trends in Biotechnology, 25, 395–400. doi:10.1016/j.tibtech.2007.07.008.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology, 48, 251–275. doi:10.1146/annurev.arplant.48.1.251.

    Article  CAS  Google Scholar 

  • Lee, S. W., Mazar, R. N., Powell, D. A., & Robb, J. (1992). Reduced PAL gene expression in Verticillium-infected resistant tomato. Plant Molecular Biology, 18, 345–352. doi:10.1007/BF00034961.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, Y., & Tohe, A. (1992). Yeast Rho3 and Rho4 RAS superfamily genes are necessary for bud growth, and their defect is suppressed by a high-dose of bud formation genes cdc42 and bem1. Molecular and Cellular Biology, 12, 5690–5699.

    PubMed  CAS  Google Scholar 

  • Mol, L., & Scholte, K. (1995). Formation of microsclerotia of Verticillium dahliae Kleb on various plant-parts of two potato cultivars. Potato Research, 38, 143–150. doi:10.1007/BF02357927.

    Article  Google Scholar 

  • Molloy, M. P., Brzezinski, E. E., Hang, J., McDowell, M. T., & VanBogelen, R. A. (2003). Overcoming technical and biological variation in quantitative proteomics. Proteomics, 3, 1912–1919. doi:10.1002/pmic.200300534.

    Article  PubMed  CAS  Google Scholar 

  • Paper, J. M., Scott-Craig, J. S., Adhikari, N. D., Cuom, C. A., & Walton, J. D. (2007). Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics, 7, 3171–3183. doi:10.1002/pmic.200700184.

    Article  PubMed  CAS  Google Scholar 

  • Radisek, S., Jakse, J., Simoncic, A., & Javornik, B. (2003). Characterization of Verticillium albo-atrum field isolates using pathogenicity data and AFLP analysis. Plant Disease, 87, 633–638. doi:10.1094/PDIS.2003.87.6.633.

    Article  CAS  Google Scholar 

  • Radisek, S., Jakse, J., & Javornik, B. (2006). Genetic variability and virulence among Verticillium albo-atrum isolates from hop. European Journal of Plant Pathology, 116, 301–314. doi:10.1007/s10658-006-9061-0.

    Article  Google Scholar 

  • Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology, 16, 522–529. doi:10.1016/j.tcb.2006.08.006.

    Article  PubMed  CAS  Google Scholar 

  • Robb, J. (2007). Verticillium tolerance: resistance, susceptibility, or mutualism? Canadian Journal of Botany, 85, 903–910. doi:10.1139/B07-093.

    Article  Google Scholar 

  • Rospert, S., Dubaquie, Y., & Gautschi, M. (2002). Nascent-polypeptide-associated complex. Cellular and Molecular Life Sciences, 59, 1632–1639. doi:10.1007/PL00012490.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, S., Prokisch, H., Schlunck, T., Camp, D. G., Ahting, U., Waizenegger, T., et al. (2006). Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics, 6, 72–80. doi:10.1002/pmic.200402084.

    Article  PubMed  CAS  Google Scholar 

  • Sewell, G. W. F., & Wilson, J. F. (1974). Hop wilt, soil temperature and nitrogen. In: East Malling Research Station Annual Report for1973. pp. 203–204.

  • Talboys, P. W. (1960). A culture-medium aiding the identification of Verticillium albo-atrum and V. dahliae. Plant Pathology, 9, 57–58. doi:10.1111/j.1365-3059.1960.tb01147.x.

    Article  Google Scholar 

  • Ueda, T., Kikuchi, A., Ohga, N., Yamamoto, J., & Takai, Y. (1990). Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to RhoB p20, a RAS p21-like GTP-binding protein. Journal of Biological Chemistry, 265, 9373–9380.

    PubMed  CAS  Google Scholar 

  • Walters, D. (2003). Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytologist, 159, 109–115. doi:10.1046/j.1469-8137.2003.00802.x.

    Article  CAS  Google Scholar 

  • Wilhelm, S. (1955). Longevity of the Verticillium wilt fungus in the laboratory and in the field. Phytopathology, 45, 180–181.

    Google Scholar 

  • Yajima, W., & Kav, N. N. V. (2006). The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics, 6, 5995–6007. doi:10.1002/pmic.200600424.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Higher Education, Science and Technology; contracts no. L4-7179, P4-0077 and S4-486-116/1000-05-310050. The authors thank Dr. Rajcevic Uros from NorLux Neuro-Oncology/Crp Sante, Luxembourg, for help in interpreting MS/MS data. We are grateful to Dr. Jesus Jorrin from the Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain, for critical reading of the manuscript and for thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branka Javornik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandelc, S., Radisek, S., Jamnik, P. et al. Comparison of mycelial proteomes of two Verticillium albo-atrum pathotypes from hop. Eur J Plant Pathol 125, 159–171 (2009). https://doi.org/10.1007/s10658-009-9467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9467-6

Keywords

Navigation