Skip to main content
Log in

An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Phytophthora blight of pepper caused by Phytophthora capsici has devastating consequences when combined with other pathogens, including Rhizoctonia solani, Fusarium oxysporum, and Fusarium solani. In order to develop a field-effective biocontrol strategy against Phytophthora blight of pepper, three chitinolytic bacteria, Serratia plymuthica strain C-1, strongly antagonistic to P. capsici, Chromobacterium sp. strain C-61, strongly antagonistic to R. solani, and Lysobacter enzymogenes strain C-3, antagonistic to R. solani and Fusarium spp., were selected. In pot studies, application of cultures combining the three bacterial strains effectively suppressed Phytophthora blight more than application of any single bacterial strain. Bioformulations developed from growth of the strains in a simple medium containing chitin under large batch conditions resulted in effective control in field applications. Efficacy of the bioformulated product depended on both the dose and timing of application. Although the undiluted product suppressed Phytophthora blight under all field conditions, a 10-fold diluted product was effective in solar-sterilized greenhouses and in fields with crop rotation. These results suggest that the developed product could be a new effective system to control Phytophthora blight disease in pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad, A. S., Sanchez, C. P., Egea, E., & Candela, M. (1999). Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepper plants. Plant Pathology, 48, 58–65.

    Article  Google Scholar 

  • Ahn, S. J., & Hwang, B. K. (1992). Isolation of antibiotic-producing actinomycetes antagonistic to Phytophthora capsici from pepper-growing soils. Korean Journal of Mycology, 20, 259–268.

    CAS  Google Scholar 

  • Ainsworth, G. C., Sparrow, F. K., & Sussman, A. S. (1973). The fungi, vol. IV (pp. 62–165). New York: Academic.

    Google Scholar 

  • Ajit, N. S., Verma, R., & Shanmugam, V. (2006). Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Current Microbiology, 52, 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Boer, M., Sluis, I., Von Loon, L. C., & Bakker, P. A. H. M. (1999). Combining Pseudomonas fluorescent spp. strains to enhance suppression of Fusarium wilt of radish. European Journal of Plant Pathology, 105, 201–210.

    Article  Google Scholar 

  • Carisse, O., & Rolland, D. (2004). Effect of timing of application of the biological control agent Microsphaeropsis ochracea on the production and ejection pattern of ascospores by Venturia inaequalis. Phytopathology, 94, 1305–1314.

    Article  PubMed  CAS  Google Scholar 

  • Chae, D. H., Jin, R. D., Hwangbo, H., Kim, Y. W., Kim, Y. C., Park, R. D., et al. (2006). Control of late blight (Phytophthora capsici) in pepper plant with a compost containing multitude of chitinase-producing bacteria. BioControl, 51, 339–351.

    Article  Google Scholar 

  • Domenech, J., Reddy, M. S., Kloepper, J. W., Ramos, B., & Gutierrez-Mañero, J. (2006). Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl, 51, 245–258.

    Article  CAS  Google Scholar 

  • Dunne, C., Crowley, J. J., Monne-Loccoz, Y., Dowling, D. N., de Bruijn, F. J., & O’Gara, F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology, 143, 3921–3931.

    Article  CAS  Google Scholar 

  • Folman, L. B., Postma, J., & Van Veen, J. A. (2003). Characterization of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber. Microbiological Research, 158, 1–9.

    Article  Google Scholar 

  • Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G., & Bahl, H. (2001). Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology, 176, 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 359–377.

    Article  CAS  Google Scholar 

  • Gamliel, A., & Katan, J. (1991). Involvement of fluorescent pseudomonads and other microorganisms in increased growth response of plants in solarized soils. Phytopathology, 81, 494–502.

    Article  Google Scholar 

  • Giesler, L. J., & Yuen, G. Y. (1998). Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Protection, 17, 509–513.

    Article  Google Scholar 

  • Hallmann, J., Rodríguez-Kábana, R., & Kloepper, J. W. (1999). Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biology and Biochemistry, 31, 551–560.

    Article  CAS  Google Scholar 

  • Hwang, B. K., & Kim, C. H. (1995). Phytophthora blight of pepper and its control in Korea. Plant Diseases, 79, 221–227.

    Article  Google Scholar 

  • Jakobi, M., & Winkelmann, G. (1996). Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. The Journal of Antibiotics, 49, 1101–1104.

    PubMed  CAS  Google Scholar 

  • Katan, J. (1981). Solar heating (solarization) of soil for control of soilborne pests. Annual Reviews of Phytopathology, 19, 211–236.

    Article  Google Scholar 

  • Kim, C. H. (1993). Current status of fungal and bacterial diseases of hot pepper and their control measures. Journal of Korean Capsicum Research Cooperation, 2, 1–11.

    Google Scholar 

  • Lee, J. Y., Kim, B. S., Lim, S. W., Lee, B. K., Kim, C. H., & Hwang, B. H. (1999). Field control of Phytophthora blight of pepper plants with antagonistic rhizobacteria and DL-b-Amino-n-Butyric acid. The Plant Pathology Journal, 15, 217–222.

    Google Scholar 

  • Manjula, K., & Podile, A. R. (2001). Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Canadian Journal of Microbiology, 47, 618–625.

    Article  PubMed  CAS  Google Scholar 

  • Morales de la Vega, L., Barboza-Corona, J. E., Aguilar-Uscanga, M. G., & Ramirez-Lepe, M. (2006). Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi. Canadian Journal of Microbiology, 52, 651–657.

    Article  CAS  Google Scholar 

  • Nam, C. G., Jee, H. J., & Kim, C. H. (1988). Studies on biological control of Phytophthora blight of Red-pepper II. Enhancement of antagonistic activity by soil amendment with organic materials. Korean Journal of Plant Patholology, 4, 313–318.

    Google Scholar 

  • Park, J. H., & Kim, H. K. (1989). Biological control Phytophthora crown and root rot of greenhouse pepper with Trichoderma harzianum and Enterobacter agglomerans by improved method of application. Korean Journal of Plant Pathology, 5, 1–12.

    Google Scholar 

  • Park, S. K., & Kim, K. C. (1991). Pathogenicities of pathogens and disease complex associated with wilt of hot-pepper plants cropped in plastic house. Korean Journal of Plant Pathology, 7, 28–36.

    Google Scholar 

  • Park, S. K., Lee, M. C., & Harman, G. E. (2005). The Biocontrol activity of Chromobacterium sp. strain C-61 against Rhizoctonia solani depends on the productive ability of chitinase. The Plant Pathology Journal, 21, 275–282.

    Google Scholar 

  • Park, S. K., Lee, H. Y., & Kim, K. C. (1995). Role of chitinase produced by Chromobacterium violaceum in the suppression of Rhizoctonia damping-off. Korean Journal of Plant Pathology, 11, 304–311.

    Google Scholar 

  • Rajkumar, M., Lee, W. H., & Lee, K. J. (2005). Screening of bacterial antagonists for biological control of Phytophthora blight of pepper. Journal of Basic Microbiology, 45, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Raupach, G. S, & Kloepper, J. W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of soilborne diseases and potential extension to systemic and foliar diseases. Phytopathology, 88, 1158–1164.

    Article  PubMed  CAS  Google Scholar 

  • Rupe, J. C., Robbins, R. T., & Gbur, Jr., E. E. (1997). Effect of crop rotation on soil population densities of Fusarium solani and Heterodera glycines and on the development of sudden death syndrome of soybean. Crop Protection, 16, 575–580.

    Article  Google Scholar 

  • Shen, S. S., Choi, O. H., Park, S. H., Kim, C. G., & Park, C. S. (2005). Root colonizing and biocontrol competency of Serratia plymuthica A21-4 against Phytophthora blight of pepper. The Plant Pathology Journal, 21, 64–67.

    Google Scholar 

  • Shen, S. S., Kim, J. W., & Park, C. S. (2002). Serratia plymuthica strain A21-4: a potential biocontrol agent against Phytophthora blight of pepper. The Plant Patholology Journal, 18, 138–141.

    Google Scholar 

  • Shoji, J., Hinoo, H., Sakazaki, R., Kato, T., Hattori, T., Matsumoto, K., et al. (1989). Isolation of CB-25-I, an antifungal antibiotic, from Serratia plymuthica. The Journal of Antibiotics, 42, 869–874.

    PubMed  CAS  Google Scholar 

  • Sneh, B. (1981). Use of Rhizosphere chitinolytic bacteria for biological control of Fusarium oxysporum f.sp. dianthi in carnation. Phytopathologische Zeitschrift, 100, 251–256.

    Google Scholar 

  • Sullivan, R. F., Holtman, M. A., Zylstra, G. J., White, J. F., & Kobayashi, D. Y. (2003) Taxonomic positioning of two biological control agents for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 16S rDNA, fatty acid composition and phenotypic characteristics. Journal of Applied Microbiology, 94, 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. L., Yieh, T. C., & Shih, I. L. (1999). Production of antifungal compounds by Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology, 25, 142–148.

    Article  CAS  Google Scholar 

  • Yuen, G. Y., Steadman, J. R., Lindgren, D. T., Schaff, D., & Jochum, C. (2001). Bean rust biological control using bacterial agents. Crop Protection, 20, 395–402.

    Article  Google Scholar 

  • Zhang, Z., & Yuen, G. Y. (2000a). Effects of culture fluids and preinduction of chitinase production on biocontrol of bipolaris leaf spot by Stenotrophomonas maltophilia C3. Biological Control, 18, 277–286.

    Article  Google Scholar 

  • Zhang, Z., & Yuen, G. Y. (2000b). The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology, 90, 384–389.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Yuen, G. Y., Sarath, G., & Penheiter, A. R. (2001). Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology, 91, 204–211.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Technology Development Programme for Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seur Kee Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.C., Jung, H., Kim, K.Y. et al. An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120, 373–382 (2008). https://doi.org/10.1007/s10658-007-9227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9227-4

Keywords

Navigation