Skip to main content

Advertisement

Log in

APOE ε4 and late-life cognition: mediation by structural brain imaging markers

  • NEURO-EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The apolipoprotein E allele 4 (APOE-ε4) is established as a major genetic risk factor for cognitive decline and late-onset Alzheimer’s disease. Accumulating evidence has linked ε4 carriership to abnormal structural brain changes across the adult lifespan. To better understand the underlying causal mechanisms, we investigated the extent to which the effect of the ε4 allele on cognition is mediated by structural brain imaging markers in the population-based Age, Gene/Environment Susceptibility–Reykjavik Study (AGES-Reykjavik). This study included 4527 participants (aged 76.3 ± 5.4 at baseline) who underwent the brain magnetic resonance imaging assessment (of brain tissue volumes, white matter lesion volume, subcortical and cortical infarcts, and cerebral microbleeds) and a battery of neuropsychological tests at baseline. Causal mediation analysis was used to quantify the mediation of the ε4 effect on cognition by these MRI markers, both individually and jointly. We observed that about 9% of the total effect of ε4 carriership on cognition was mediated by white matter lesion volume. This proportion increased to 25% when total brain tissue volume was jointly considered with white matter lesion volume. In analyses separating ε4 homozygotes from ε4 heterozygotes, the effect on global cognition of specifically ε4 homozygosity appeared to be partially mediated by cerebral microbleeds, particularly lobar microbleeds. There was no evidence of mediation of the ε4 effect by cortical or subcortical infarcts. This study shows that the ε4 effect on cognition is partly mediated by white matter lesion volume and total brain tissue volume. These findings suggest the joint role of cerebral small vessel disease and neurodegeneration in the ε4-cognition relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis APOE and Alzheimer Disease Meta Analysis Consortium. JAMA : J Am Med Assoc. 1997;278(16):1349–56.

    Article  CAS  Google Scholar 

  2. Yamazaki Y, Zhao N, Caulfield TR, Liu C-C, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18. https://doi.org/10.1038/s41582-019-0228-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–6. https://doi.org/10.1038/nature11087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan TA, Shah T, Prieto D, et al. Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int J Epidemiol. 2013;42(2):475–92. https://doi.org/10.1093/ije/dyt034.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schilling S, Destefano AL, Sachdev PS, et al. APOE genotype and MRI markers of cerebrovascular disease: systematic review and meta-analysis. Neurology. 2013;81(3):292–300. https://doi.org/10.1212/wnl.0b013e31829bfda4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schneider JA, Bienias JL, Wilson RS, Berry-Kravis E, Evans DA, Bennett DA. The apolipoprotein E epsilon4 allele increases the odds of chronic cerebral infarction [corrected] detected at autopsy in older persons. Stroke; J Cereb Circ. 2005;36(5):954–9. https://doi.org/10.1161/01.STR.0000160747.27470.2a.

    Article  CAS  Google Scholar 

  7. Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry. 2012;83(2):124–37. https://doi.org/10.1136/jnnp-2011-301308.

    Article  PubMed  Google Scholar 

  8. Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011;70(6):871–80. https://doi.org/10.1002/ana.22516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennett DA, Wilson RS, Boyle PA, Buchman AS, Schneider JA. Relation of neuropathology to cognition in persons without cognitive impairment. Ann Neurol. 2012;72(4):599–609. https://doi.org/10.1002/ana.23654.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204. https://doi.org/10.1212/01.wnl.0000271090.28148.24.

    Article  PubMed  Google Scholar 

  11. Toledo JB, Arnold SE, Raible K, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain. 2013;136(Pt 9):2697–706. https://doi.org/10.1093/brain/awt188.

    Article  PubMed  PubMed Central  Google Scholar 

  12. White L, Small BJ, Petrovitch H, et al. Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia Aging Study. J Geriatr Psychiatry Neurol. 2005;18(4):224–7. https://doi.org/10.1177/0891988705281872.

    Article  PubMed  Google Scholar 

  13. The LN. Vascular disease and neurodegeneration: advancing together. Lancet Neurol. 2017;16(5):333. https://doi.org/10.1016/S1474-4422(17)30086-8.

    Article  Google Scholar 

  14. Snyder HM, Corriveau RA, Craft S, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement. 2015;11(6):710–7. https://doi.org/10.1016/j.jalz.2014.10.008.

    Article  PubMed  Google Scholar 

  15. Bennett DA, Schneider JA, Wilson RS, Bienias JL, Berry-Kravis E, Arnold SE. Amyloid mediates the association of apolipoprotein E e4 allele to cognitive function in older people. J Neurol Neurosurg Psychiatry. 2005;76(9):1194–9. https://doi.org/10.1136/jnnp.2004.054445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bennett DA, Wilson RS, Schneider JA, et al. Apolipoprotein E epsilon4 allele, AD pathology, and the clinical expression of Alzheimer’s disease. Neurology. 2003;60(2):246–52.

    Article  CAS  Google Scholar 

  17. Mortimer JA, Snowdon DA, Markesbery WR. The effect of APOE-epsilon4 on dementia is mediated by Alzheimer neuropathology. Alzheimer Dis Assoc Disord. 2009;23(2):152–7.

    Article  Google Scholar 

  18. Yu L, Boyle P, Schneider JA, et al. APOE epsilon4, Alzheimer’s disease pathology, cerebrovascular disease, and cognitive change over the years prior to death. Psychol Aging. 2013;28(4):1015–23. https://doi.org/10.1037/a0031642.

    Article  PubMed  Google Scholar 

  19. Harris TB, Launer LJ, Eiriksdottir G, et al. Age, gene/environment susceptibility-Reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol. 2007;165(9):1076–87. https://doi.org/10.1093/aje/kwk115.

    Article  PubMed  Google Scholar 

  20. Sigurdsson S, Aspelund T, Forsberg L, et al. Brain tissue volumes in the general population of the elderly: the AGES-Reykjavik study. Neuroimage. 2012;59(4):3862–70. https://doi.org/10.1016/j.neuroimage.2011.11.024.

    Article  PubMed  Google Scholar 

  21. Ding J, Sigurðsson S, Jónsson PV, et al. Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology. 2017;88(22):2089–97. https://doi.org/10.1212/wnl.0000000000003983.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ding J, Sigurdsson S, Garcia M, et al. Risk factors associated with incident cerebral microbleeds according to location in older people. JAMA Neurol. 2015;72(6):682. https://doi.org/10.1001/jamaneurol.2015.0174.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qiu C, Cotch MF, Sigurdsson S, et al. Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology. 2010;75(24):2221–8. https://doi.org/10.1212/wnl.0b013e3182020349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delis D, Kramer J, Kaplan E, Ober B. The California Verbal Learning Test: Research Edition, Adult Version. 1987, San Antonio, TX. The Psychological Corporation. 1987

  25. Salthouse T, Babcock R. Decomposing adult age differences in executive function. Dev Psychol. 1991;27:763–76.

    Article  Google Scholar 

  26. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18(6):643.

    Article  Google Scholar 

  27. Wechsler D. Wechsler adult intelligence scale. Archives of Clinical Neuropsychology. 1955.

  28. Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbitt P. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia. 1994;5(5):266–81. https://doi.org/10.1159/000106735.

    Article  CAS  PubMed  Google Scholar 

  29. Harris TB, Launer LJ, Eiriksdottir G, et al. Age, gene/environment susceptibility-Reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol. 2007;165(9):1076–87. https://doi.org/10.1093/aje/kwk115.

    Article  PubMed  Google Scholar 

  30. VanderWeele TJ. Mediation analysis: a practitioner’s guide. Annu Rev Public Health. 2016;37(1):17–32. https://doi.org/10.1146/annurev-publhealth-032315-021402.

    Article  PubMed  Google Scholar 

  31. VanderWeele T. Explanation in causal inference: methods for mediation and interaction: Oxford University Press; 2015.

  32. Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18(2):137–50. https://doi.org/10.1037/a0031034.

    Article  PubMed  PubMed Central  Google Scholar 

  33. VanderWeele TJ, Vansteelandt S. Mediation Analysis with Multiple Mediators. Epidemiol Method. 2014;2(1):95–115.

    Article  CAS  Google Scholar 

  34. VanderWeele TJ. A unification of mediation and interaction: a 4-way decomposition. Epidemiology. 2014;25(5):749–61. https://doi.org/10.1097/EDE.0000000000000121.

    Article  PubMed  PubMed Central  Google Scholar 

  35. VanderWeele TJ. Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology. 2010;21(4):540–51. https://doi.org/10.1097/EDE.0b013e3181df191c.

    Article  PubMed  PubMed Central  Google Scholar 

  36. VanderWeele TJ, Valeri L, Ogburn EL. The role of measurement error and misclassification in mediation analysis: mediation and measurement error. Epidemiology. 2012;23(4):561–4. https://doi.org/10.1097/EDE.0b013e318258f5e4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JAR, Carare RO. Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 Allele. PLoS ONE. 2012;7(7): e41636. https://doi.org/10.1371/journal.pone.0041636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horsburgh K, McCarron MO, White F, Nicoll JAR. The role of apolipoprotein E in Alzheimer’s disease, acute brain injury and cerebrovascular disease: evidence of common mechanisms and utility of animal models. Neurobiol Aging. 2000;21(2):245–55. https://doi.org/10.1016/s0197-4580(00)00097-x.

    Article  CAS  PubMed  Google Scholar 

  39. Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71–6. https://doi.org/10.1038/s41586-020-2247-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–38. https://doi.org/10.1016/S1474-4422(13)70124-8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. https://doi.org/10.1016/s1474-4422(10)70104-6.

    Article  PubMed  Google Scholar 

  42. Cordonnier C, van der Flier WM. Brain microbleeds and Alzheimer’s disease: innocent observation or key player? Brain : a journal of neurology. 2011;134(Pt 2):335–44. https://doi.org/10.1093/brain/awq321.

    Article  Google Scholar 

  43. Martinez-Ramirez S, Greenberg SM, Viswanathan A. Cerebral microbleeds: overview and implications in cognitive impairment. Alzheimer’s research & therapy. 2014;6(3):33. https://doi.org/10.1186/alzrt263.

    Article  Google Scholar 

  44. Poels MM, Ikram MA, van der Lugt A, et al. Incidence of cerebral microbleeds in the general population: the Rotterdam Scan Study. Stroke. 2011;42(3):656–61. https://doi.org/10.1161/strokeaha.110.607184.

    Article  PubMed  Google Scholar 

  45. Rannikmae K, Kalaria RN, Greenberg SM, et al. APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(3):300–5. https://doi.org/10.1136/jnnp-2013-306485.

    Article  PubMed  Google Scholar 

  46. Ringman JM, Sachs MC, Zhou Y, Monsell SE, Saver JL, Vinters HV. Clinical predictors of severe cerebral amyloid angiopathy and influence of APOE genotype in persons with pathologically verified Alzheimer disease. JAMA Neurol. 2014;71(7):878–83. https://doi.org/10.1001/jamaneurol.2014.681.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Knol MJ, Lu D, Traylor M, et al. Association of common genetic variants with brain microbleeds. Neurology. 2020;95(24):e3331–43. https://doi.org/10.1212/wnl.0000000000010852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Serrano-Pozo A, Qian J, Monsell SE, Betensky RA, Hyman BT. APOEepsilon2 is associated with milder clinical and pathological Alzheimer disease. Ann Neurol. 2015;77(6):917–29. https://doi.org/10.1002/ana.24369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lemmens R, Gorner A, Schrooten M, Thijs V. Association of apolipoprotein E epsilon2 with white matter disease but not with microbleeds. Stroke; a journal of cerebral circulation. 2007;38(4):1185–8. https://doi.org/10.1161/01.STR.0000259816.31370.44.

    Article  CAS  Google Scholar 

  50. Poels MM, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology. 2012;78(5):326–33. https://doi.org/10.1212/WNL.0b013e3182452928.

    Article  CAS  PubMed  Google Scholar 

  51. Schuur M, van Swieten JC, Schol-Gelok S, et al. Genetic risk factors for cerebral small-vessel disease in hypertensive patients from a genetically isolated population. J Neurol Neurosurg Psychiatry. 2011;82(1):41–4. https://doi.org/10.1136/jnnp.2009.176362.

    Article  CAS  PubMed  Google Scholar 

  52. Barnes J, Carmichael OT, Leung KK, et al. Vascular and Alzheimer’s disease markers independently predict brain atrophy rate in Alzheimer’s Disease Neuroimaging Initiative controls. Neurobiol Aging. 2013;34(8):1996–2002. https://doi.org/10.1016/j.neurobiolaging.2013.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jouvent E, Viswanathan A, Chabriat H. Cerebral atrophy in cerebrovascular disorders. J Neuroimaging. 2010;20(3):213–8. https://doi.org/10.1111/j.1552-6569.2009.00370.x.

    Article  PubMed  Google Scholar 

  54. Boyle PA, Yu L, Wilson RS, Leurgans SE, Schneider JA, Bennett DA. Person-specific contribution of neuropathologies to cognitive loss in old age. Ann Neurol. 2018;83(1):74–83. https://doi.org/10.1002/ana.25123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank AGES-Reykjavik study participants for their willingness to participate in the study and all the employees of the Icelandic Heart Preventive Clinic (Hjartavernd) for their contributions to data collection.

Funding

Y.M. was supported by the National Institute on Aging (K99AG071742). G.S. was funded by a Doctoral Foreign Study Award from the Canadian Institutes of Health Research (201110DFS-277667-DRB-217413). T. J. V. was supported by the National Institute of Environmental Health Sciences (R56 ES017876). D.B. was also supported by the National Institute on Aging (P50 AG005134). The Age, Gene/Environment Susceptibility-Reykjavik Study was supported by NIH contracts N01-AG-1–2100 and HHSN27120120022C, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Blacker.

Ethics declarations

Conflicts of interest

No authors have any conflicts of interest relevant to this work.

Data availability

Data from the AGES study are available through collaboration under a Data Use Agreement with the Icelandic Heart Association (IHA) and an IRB approval in accordance with informed consent. For data access requests, interested researchers may contact: AGES_data_request@hjarta.is.

Code availability

Code is available upon reasonable request from the corresponding author.

Ethics declarations

All participants provided written consent for this study.

Ethical approval

The AGES-Reykjavik Study was approved by the Icelandic National Bioethics Committee (VSN: 00–063), the Data Protection Authority and the institutional review board of the National Institute on Aging.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Sajeev, G., VanderWeele, T.J. et al. APOE ε4 and late-life cognition: mediation by structural brain imaging markers. Eur J Epidemiol 37, 591–601 (2022). https://doi.org/10.1007/s10654-022-00864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-022-00864-7

Keywords

Navigation