Skip to main content

Advertisement

Log in

Long-term intake of total energy and fat in relation to subjective cognitive decline

  • NEURO-EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Diet is one of the modifiable risk factors for cognitive decline. However, human studies on total energy intake and cognitive function have remained limited and studies on fat intake and cognitive decline have been inconclusive. We aimed to examine prospectively the associations between long-term intakes of total energy and fat with subsequent subjective cognitive decline (SCD). A total of 49,493 women from the Nurses’ Health Study and 27,842 men from the Health Professionals Follow-up Study were followed for over 20 years. Average dietary intake was calculated based on repeated food frequency questionnaires (SFFQs), and Poisson regression was used to evaluate associations. Higher total energy intake was significantly associated with greater odds of SCD in both cohorts. Comparing the highest with lowest quintiles of total energy intake, the pooled multivariable-adjusted ORs (95% CIs) for a 3-unit increment in SCD, corresponding to poor versus normal SCD, was 2.77 (2.53, 2.94). Each 500 kcal/day greater intake of total energy was associated with 48% higher odds of SCD. Intakes of both total fat and total carbohydrate appeared to contribute to the positive association between total energy intake and SCD although for the same percent of energy, the association was stronger for total fat. In conclusion, higher intakes of total energy, total fat, and total carbohydrate were adversely associated with SCD. Whether these associations are causal is unclear and deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be shared at the request of other qualified investigators for purposes of replicating procedures and results. Our NHS and HPFS websites (www.nurseshealthstudy.org and sites.sph.harvard.edu/hpfs/) include guidelines for external users and links to all questionnaires.

Code availability

Analytic code will be made available upon request.

Abbreviations

SCD:

Subjective cognitive decline

OR:

Odds ratio

CI:

Confidence interval

NHS:

Nurses’ Health Study

HPFS:

Health Professionals Follow-up Study

SFFQ:

Food frequency questionnaires

BMI:

Body mass index

CVD:

Cardiovascular disease

FA:

Fatty acids

SFA:

Saturated fatty acid

MUFA:

Monounsaturated fatty acids

PUFA:

Polyunsaturated fatty acids

ALA:

Alpha-linolenic acid

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

References

  1. Ahmadi-Abhari S, Guzman-Castillo M, Bandosz P, et al. Temporal trend in dementia incidence since 2002 and projections for prevalence in England and Wales to 2040: modelling study. BMJ. 2017. https://doi.org/10.1136/bmj.j2856.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yeh TS, Wang JD, Ku LE. Estimating life expectancy and lifetime healthcare costs for Alzheimer’s disease in Taiwan: does the age of disease onset matter? JAD. 2020;73(1):307–15. https://doi.org/10.3233/jad-181060.

    Article  PubMed  Google Scholar 

  3. Wessels AM, Tariot PN, Zimmer JA, et al. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer disease: the AMARANTH and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol. 2019. https://doi.org/10.1001/jamaneurol.2019.3988.

    Article  PubMed Central  Google Scholar 

  4. Rabin LA, Smart CM, Amariglio RE. Subjective cognitive decline in preclinical Alzheimer’s disease. Annu Rev Clin Psychol. 2017;13:369–96. https://doi.org/10.1146/annurev-clinpsy-032816-045136.

    Article  PubMed  Google Scholar 

  5. Galluzzi S, Frisoni GB. Imaging, subjective complaints, and MCI: 30 years before. J Nutr Health Aging. 2008;12(1):80s-s83. https://doi.org/10.1007/bf02982592.

    Article  CAS  PubMed  Google Scholar 

  6. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7(3):280–92. https://doi.org/10.1016/j.jalz.2011.03.003.

    Article  PubMed  Google Scholar 

  7. Tucker KL. Nutrient intake, nutritional status, and cognitive function with aging. Ann N Y Acad Sci. 2016;1367(1):38–49. https://doi.org/10.1111/nyas.13062.

    Article  CAS  PubMed  Google Scholar 

  8. Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489:318. https://doi.org/10.1038/nature11432.

    Article  CAS  PubMed  Google Scholar 

  9. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014;5:3557. https://doi.org/10.1038/ncomms4557.

    Article  CAS  PubMed  Google Scholar 

  10. Parikh I, Guo J, Chuang KH, et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging. 2016;8(11):2814–26. https://doi.org/10.18632/aging.101094.

  11. Wahl D, Cogger VC, Solon-Biet SM, et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev. 2016;31:80–92. https://doi.org/10.1016/j.arr.2016.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dal-Pan A, Pifferi F, Marchal J, Picq JL, Aujard F. Cognitive performances are selectively enhanced during chronic caloric restriction or resveratrol supplementation in a primate. PLoS ONE. 2011;6(1):e16581. https://doi.org/10.1371/journal.pone.0016581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93. https://doi.org/10.1038/ng.440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Devore EE, Stampfer MJ, Breteler MM, et al. Dietary fat intake and cognitive decline in women with type 2 diabetes. Diabetes Care. 2009;32(4):635–40. https://doi.org/10.2337/dc08-1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okereke OI, Rosner BA, Kim DH, et al. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann Neurol. 2012;72(1):124–34. https://doi.org/10.1002/ana.23593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Diet and risk of dementia: does fat matter? The Rotterdam Study. Neurology. 2002;59(12):1915–21.

    Article  CAS  Google Scholar 

  17. Cherbuin N, Anstey KJ. The Mediterranean diet is not related to cognitive change in a large prospective investigation: the PATH Through Life study. Am J Geriatr Psychiatry. 2012;20(7):635–9. https://doi.org/10.1097/JGP.0b013e31823032a9.

    Article  PubMed  Google Scholar 

  18. Gibson EL, Barr S, Jeanes YM. Habitual fat intake predicts memory function in younger women. Front Hum Neurosci. 2013;7:838. https://doi.org/10.3389/fnhum.2013.00838.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Klipstein-Grobusch K, den Breeijen JH, Goldbohm RA, et al. Dietary assessment in the elderly: validation of a semiquantitative food frequency questionnaire. Eur J Clin Nutr. 1998;52(8):588–96. https://doi.org/10.1038/sj.ejcn.1600611.

    Article  CAS  PubMed  Google Scholar 

  20. Rimm EB, Giovannucci EL, Willett WC, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet (London, England). 1991;338(8765):464–8.

    Article  CAS  Google Scholar 

  21. Bernstein AM, Rosner BA, Willett WC. Cereal fiber and coronary heart disease: a comparison of modeling approaches for repeated dietary measurements, intermediate outcomes, and long follow-up. Eur J Epidemiol. 2011;26(11):877–86. https://doi.org/10.1007/s10654-011-9626-x.

    Article  CAS  PubMed  Google Scholar 

  22. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol. 1992;135(10):1114–26 (discussion 27–36).

  23. Willett W. Nutritional epidemiology. 3rd ed. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  24. Fondell E, Townsend MK, Unger LD, et al. Physical activity across adulthood and subjective cognitive function in older men. Eur J Epidemiol. 2018;33(1):79–87. https://doi.org/10.1007/s10654-017-0331-2.

    Article  PubMed  Google Scholar 

  25. Yuan C, Fondell E, Bhushan A, et al. Long-term intake of vegetables and fruits and subjective cognitive function in US men. Neurology. 2019;92(1):e63–75. https://doi.org/10.1212/wnl.0000000000006684.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Molinuevo JL, Rabin LA, Amariglio R, et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimer’s Dementia. 2017;13(3):296–311. https://doi.org/10.1016/j.jalz.2016.09.012.

    Article  PubMed  Google Scholar 

  27. Samieri C, Proust-Lima C, M MG, et al. Subjective cognitive concerns, episodic memory, and the APOE epsilon4 allele. Alzheimer's Dementia 2014;10(6):752-9.e1. https://doi.org/10.1016/j.jalz.2014.06.012.

  28. Willett W. Nutritional epidemiology. New York: Oxford University Press; 2017.

    Google Scholar 

  29. Fleiss JL. Chapter 13. The measurement of interrater agreement. In: Statistical methods for rates and proportions, 2nd edition, John Wiley, New York, p. 212–236 (1981).

  30. Amariglio RE, Townsend MK, Grodstein F, Sperling RA, Rentz DM. Specific subjective memory complaints in older persons may indicate poor cognitive function. J Am Geriatr Soc. 2011;59(9):1612–7. https://doi.org/10.1111/j.1532-5415.2011.03543.x.

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Oijen M, de Jong FJ, Hofman A, Koudstaal PJ, Breteler MM. Subjective memory complaints, education, and risk of Alzheimer’s disease. Alzheimer’s Dementia. 2007;3(2):92–7. https://doi.org/10.1016/j.jalz.2007.01.011.

    Article  PubMed  Google Scholar 

  32. Yeh TS, Yuan C, Ascherio A, Rosner BA, Blacker D, Willett WC. Long-term dietary protein intake and subjective cognitive decline in US men and women. Am J Clin Nutr. 2021. https://doi.org/10.1093/ajcn/nqab236.

    Article  PubMed  Google Scholar 

  33. Rothman KJ. Epidemiology: an introduction. New York: Oxford University Press; 2012.

    Google Scholar 

  34. Yeh TS, Yuan C, Ascherio A, Rosner BA, Willett WC, Blacker D. Long-term dietary flavonoid intake and subjective cognitive decline in US men and women. Neurology. 2021;97(10):e1041–56. https://doi.org/10.1212/wnl.0000000000012454.

    Article  CAS  PubMed  Google Scholar 

  35. Bhushan A, Fondell E, Ascherio A, Yuan C, Grodstein F, Willett W. Adherence to Mediterranean diet and subjective cognitive function in men. Eur J Epidemiol. 2018;33(2):223–34. https://doi.org/10.1007/s10654-017-0330-3.

    Article  PubMed  Google Scholar 

  36. Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201–4. https://doi.org/10.1126/science.1173635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21. https://doi.org/10.1038/nature11432.

    Article  CAS  PubMed  Google Scholar 

  38. Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://doi.org/10.1196/annals.1396.037.

    Article  CAS  PubMed  Google Scholar 

  39. Luchsinger JA, Tang MX, Shea S, Mayeux R. Caloric intake and the risk of Alzheimer disease. Arch Neurol. 2002;59(8):1258–63. https://doi.org/10.1001/archneur.59.8.1258.

    Article  PubMed  Google Scholar 

  40. Geda YE, Ragossnig M, Roberts LA, et al. Caloric intake, aging, and mild cognitive impairment: a population-based study. JAD. 2013;34(2):501–7. https://doi.org/10.3233/jad-121270.

    Article  CAS  PubMed  Google Scholar 

  41. Witte AV, Fobker M, Gellner R, Knecht S, Floel A. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci USA. 2009;106(4):1255–60. https://doi.org/10.1073/pnas.0808587106.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Blanc S, Schoeller D, Kemnitz J, et al. Energy expenditure of rhesus monkeys subjected to 11 years of dietary restriction. J Clin Endocrinol Metab. 2003;88(1):16–23. https://doi.org/10.1210/jc.2002-020405.

    Article  CAS  PubMed  Google Scholar 

  43. Martin CK, Das SK, Lindblad L, et al. Effect of calorie restriction on the free-living physical activity levels of nonobese humans: results of three randomized trials. Journal of applied physiology (Bethesda, Md. : 1985). 2011;110(4):956–63. https://doi.org/10.1152/japplphysiol.00846.2009.

  44. Redman LM, Smith SR, Burton JH, Martin CK, Il'yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018;27(4):805-15 e4. https://doi.org/10.1016/j.cmet.2018.02.019.

  45. Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med. 2011;32(4–6):279–304. https://doi.org/10.1016/j.mam.2011.10.007.

    Article  CAS  PubMed  Google Scholar 

  46. Lee J, Duan W, Long JM, Ingram DK, Mattson MP. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci. 2000;15(2):99–108. https://doi.org/10.1385/jmn:15:2:99.

    Article  CAS  PubMed  Google Scholar 

  47. Das SK, Roberts SB, Bhapkar MV, et al. Body-composition changes in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)-2 study: a 2-y randomized controlled trial of calorie restriction in nonobese humans. Am J Clin Nutr. 2017;105(4):913–27. https://doi.org/10.3945/ajcn.116.137232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fitzpatrick AL, Kuller LH, Lopez OL, et al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch Neurol. 2009;66(3):336–42. https://doi.org/10.1001/archneurol.2008.582.

    Article  PubMed  PubMed Central  Google Scholar 

  49. DeLany JP, Hansen BC, Bodkin NL, Hannah J, Bray GA. Long-term calorie restriction reduces energy expenditure in aging monkeys. J Gerontol Ser A Biol Sci Med Sci. 1999;54(1):B5-11; (discussion B2–3). https://doi.org/10.1093/gerona/54.1.b5.

  50. Yin Z, Raj DD, Schaafsma W, et al. Low-fat diet with caloric restriction reduces white matter microglia activation during aging. Front Mol Neurosci. 2018;11:65. https://doi.org/10.3389/fnmol.2018.00065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol. 1997;42(5):776–82. https://doi.org/10.1002/ana.410420514.

    Article  CAS  PubMed  Google Scholar 

  52. Roberts RO, Roberts LA, Geda YE, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. JAD. 2012;32(2):329–39. https://doi.org/10.3233/jad-2012-120862.

    Article  CAS  PubMed  Google Scholar 

  53. Wang DD, Li Y, Chiuve SE, et al. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med. 2016;176(8):1134–45. https://doi.org/10.1001/jamainternmed.2016.2417.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev. 2016;4:CD009002. https://doi.org/10.1002/14651858.CD009002.pub3.

  55. Li Y, Schoufour J, Wang DD, et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: prospective cohort study. BMJ (Clinical Research ed.). 2020;368:l6669. https://doi.org/10.1136/bmj.l6669.

  56. Jessen F, Wiese B, Bachmann C, et al. Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Arch Gen Psychiatry. 2010;67(4):414–22. https://doi.org/10.1001/archgenpsychiatry.2010.30.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Institutes of Health (UM1 CA186107, U01 167552).

Author information

Authors and Affiliations

Authors

Contributions

TSY designed and conducted the analysis, interpreted the data, and wrote the manuscript. CY contributed to data analysis and completed the technical review of the results. AA, BAR, DB contributed to the interpretation of the results, provided critical feedback, and revision of the manuscript for important intellectual content. WCW designed the analysis, interpretation of the results, revision of the manuscript for important intellectual content, and supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Walter C. Willett.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, TS., Yuan, C., Ascherio, A. et al. Long-term intake of total energy and fat in relation to subjective cognitive decline. Eur J Epidemiol 37, 133–146 (2022). https://doi.org/10.1007/s10654-021-00814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-021-00814-9

Keywords

Navigation