Skip to main content
Log in

Body mass index and risk of colorectal carcinoma subtypes classified by tumor differentiation status

  • CANCER
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Previous studies suggest that abnormal energy balance status may dysregulate intestinal epithelial homeostasis and promote colorectal carcinogenesis, yet little is known about how host energy balance and obesity influence enterocyte differentiation during carcinogenesis. We hypothesized that the association between high body mass index (BMI) and colorectal carcinoma incidence might differ according to tumor histopathologic differentiation status. Using databases of the Nurses’ Health Study and Health Professionals Follow-up Study, and duplication-method Cox proportional hazards models, we prospectively examined an association between BMI and the incidence of colorectal carcinoma subtypes classified by differentiation features. 120,813 participants were followed for 26 or 32 years and 1528 rectal and colon cancer cases with available tumor pathological data were documented. The association between BMI and colorectal cancer risk significantly differed depending on the presence or absence of poorly-differentiated foci (Pheterogeneity = 0.006). Higher BMI was associated with a higher risk of colorectal carcinoma without poorly-differentiated foci (≥30.0 vs. 18.5–22.4 kg/m2: multivariable-adjusted hazard ratio, 1.87; 95% confidence interval, 1.49–2.34; Ptrend < 0.001), but not with risk of carcinoma with poorly-differentiated foci (Ptrend = 0.56). This differential association appeared to be consistent in strata of tumor microsatellite instability or FASN expression status, although the statistical power was limited. The association between BMI and colorectal carcinoma risk did not significantly differ by overall tumor differentiation, mucinous differentiation, or signet ring cell component (Pheterogeneity > 0.03, with the adjusted α of 0.01). High BMI was associated with risk of colorectal cancer subtype containing no poorly-differentiated focus. Our findings suggest that carcinogenic influence of excess energy balance might be stronger for tumors that retain better intestinal differentiation throughout the tumor areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AHEI:

Alternate Healthy Eating Index

BMI:

Body mass index

CI:

Confidence interval

FFPE:

Formalin-fixed paraffin-embedded

HPFS:

Health Professionals Follow-up Study

HR:

Hazard ratio

ISC:

Intestinal stem cells

METS:

Metabolic equivalent task score

MPE:

Molecular pathological epidemiology

MSI:

Microsatellite instability

MSS:

Microsatellite stable

NHS:

Nurses’ Health Study

NSAIDs:

Non-steroidal anti-inflammatory drugs

SD:

Standard deviation

WHO:

World Health Organization

References

  1. Renehan AG, Soerjomataram I, Tyson M, Egger M, Zwahlen M, Coebergh JW, Buchan I. Incident cancer burden attributable to excess body mass index in 30 European countries. Int J Cancer. 2010;126(3):692–702.

    Article  CAS  PubMed  Google Scholar 

  2. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet. 2014;384(9945):755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, van de Velde CJH, Watanabe T. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Martinez-Useros J, Garcia-Foncillas J. Obesity and colorectal cancer: molecular features of adipose tissue. J Transl Med. 2016;14(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, Qin H. Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS ONE. 2013;8(1):e53916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Booth A, Magnuson A, Fouts J, Foster M. Adipose tissue, obesity and adipokines: role in cancer promotion. Horm Mol Biol Clin Investig. 2015;21(1):57–74.

    CAS  PubMed  Google Scholar 

  7. Fedirko V, Romieu I, Aleksandrova K, Pischon T, Trichopoulos D, Peeters PH, Romaguera-Bosch D, Bueno-de-Mesquita HB, Dahm CC, Overvad K, Chirlaque MD, Johansen C, Bidstrup PE, Dalton SO, Gunter MJ, Wark PA, Norat T, Halkjaer J, Tjonneland A, Dik VK, Siersema PD, Boutron-Ruault MC, Dossus L, Bastide N, Kuhn T, Kaaks R, Boeing H, Trichopoulou A, Klinaki E, Katsoulis M, Pala V, Panico S, Tumino R, Palli D, Vineis P, Weiderpass E, Skeie G, Gonzalez CA, Sanchez MJ, Barricarte A, Amiano P, Quiros JR, Manjer J, Jirstrom K, Ljuslinder I, Palmqvist R, Khaw KT, Wareham N, Bradbury KE, Stepien M, Duarte-Salles T, Riboli E, Jenab M. Pre-diagnostic anthropometry and survival after colorectal cancer diagnosis in Western European populations. Int J Cancer. 2014;135(8):1949–60.

    Article  CAS  PubMed  Google Scholar 

  8. Campbell PT, Newton CC, Newcomb PA, Phipps AI, Ahnen DJ, Baron JA, Buchanan DD, Casey G, Cleary SP, Cotterchio M, Farris AB, Figueiredo JC, Gallinger S, Green RC, Haile RW, Hopper JL, Jenkins MA, Le Marchand L, Makar KW, McLaughlin JR, Potter JD, Renehan AG, Sinicrope FA, Thibodeau SN, Ulrich CM, Win AK, Lindor NM, Limburg PJ. Association between body mass index and mortality for colorectal cancer survivors: overall and by tumor molecular phenotype. Cancer Epidemiol Biomarkers Prev. 2015;24(8):1229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McLeod CJ, Wang L, Wong C, Jones DL. Stem cell dynamics in response to nutrient availability. Curr Biol. 2010;20(23):2100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Brien LE, Soliman SS, Li X, Bilder D. Altered modes of stem cell division drive adaptive intestinal growth. Cell. 2011;147(3):603–14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stelzner M, Helmrath M, Dunn JC, Henning SJ, Houchen CW, Kuo C, Lynch J, Li L, Magness ST, Martin MG, Wong MH, Yu J. A nomenclature for intestinal in vitro cultures. Am J Physiol Gastrointest Liver Physiol. 2012;302(12):G1359–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, Nielsen GP, Mino-Kenudson M, Zukerberg LR, Bhan AK, Deshpande V, Sabatini DM. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012;486(7404):490–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mah AT, Van Landeghem L, Gavin HE, Magness ST, Lund PK. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology. 2014;155(9):3302–14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong SJ, Bauer-Rowe KE, Xifaras ME, Akkad A, Arias E, Pinello L, Katz Y, Shinagare S, Abu-Remaileh M, Mihaylova MM, Lamming DW, Dogum R, Guo G, Bell GW, Selig M, Nielsen GP, Gupta N, Ferrone CR, Deshpande V, Yuan GC, Orkin SH, Sabatini DM, Yilmaz OH. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531(7592):53–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blomain ES, Waldman SA. Does obesity promote the development of colorectal cancer? Expert Rev Anticancer Ther. 2016;16(5):465–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang D, Fu L, Ning W, Guo L, Sun X, Dey SK, Chaturvedi R, Wilson KT, DuBois RN. Peroxisome proliferator-activated receptor δ promotes colonic inflammation and tumor growth. Proc Natl Acad Sci USA. 2014;111(19):7084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colussi D, Brandi G, Bazzoli F, Ricciardiello L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci. 2013;14(8):16365–85.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kocarnik JM, Shiovitz S, Phipps AI. Molecular phenotypes of colorectal cancer and potential clinical applications. Gastroenterol Rep (Oxf). 2015;3(4):269–76.

    Google Scholar 

  19. Kudryavtseva AV, Lipatova AV, Zaretsky AR, Snezhkina AV, Kaprin AD, Alekseev BY. Important molecular genetic markers of colorectal cancer. Oncotarget. 2016;7(33):53959–83.

    PubMed  PubMed Central  Google Scholar 

  20. Ogino S, Brahmandam M, Cantor M, Namgyal C, Kawasaki T, Kirkner G, Meyerhardt JA, Loda M, Fuchs CS. Distinct molecular features of colorectal carcinoma with signet ring cell component and colorectal carcinoma with mucinous component. Mod Pathol. 2006;19(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  21. Ogino S, Odze RD, Kawasaki T, Brahmandam M, Kirkner GJ, Laird PW, Loda M, Fuchs CS. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma. Am J Surg Pathol. 2006;30(9):1175–83.

    Article  PubMed  Google Scholar 

  22. Ogino S, Kawasaki T, Ogawa A, Kirkner GJ, Loda M, Fuchs CS. Fatty acid synthase overexpression in colorectal cancer is associated with microsatellite instability, independent of CpG island methylator phenotype. Hum Pathol. 2007;38(6):842–9.

    Article  CAS  PubMed  Google Scholar 

  23. Haydon AMM, Jass JR. Emerging pathways in colorectal-cancer development. Lancet Oncol. 2002;3(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  24. Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, Onody T, Bubley G, Balk S, Loda M. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res. 2003;1(10):707–15.

    CAS  PubMed  Google Scholar 

  25. Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 2006;66(12):5977–80.

    Article  CAS  PubMed  Google Scholar 

  26. Rashid A, Pizer ES, Moga M, Milgraum LZ, Zahurak M, Pasternack GR, Kuhajda FP, Hamilton SR. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol. 1997;150(1):201–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Luque-Garcia JL, Martinez-Torrecuadrada JL, Epifano C, Canamero M, Babel I, Casal JI. Differential protein expression on the cell surface of colorectal cancer cells associated to tumor metastasis. Proteomics. 2010;10(5):940–52.

    CAS  PubMed  Google Scholar 

  28. Carvalho MA, Zecchin KG, Seguin F, Bastos DC, Agostini M, Rangel AL, Veiga SS, Raposo HF, Oliveira HC, Loda M, Coletta RD, Graner E. Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. Int J Cancer. 2008;123(11):2557–65.

    Article  CAS  PubMed  Google Scholar 

  29. Murata S, Yanagisawa K, Fukunaga K, Oda T, Kobayashi A, Sasaki R, Ohkohchi N. Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice. Cancer Sci. 2010;101(8):1861–5.

    Article  CAS  PubMed  Google Scholar 

  30. Slattery ML, Curtin K, Anderson K, Ma KN, Ballard L, Edwards S, Schaffer D, Potter J, Leppert M, Samowitz WS. Associations between cigarette smoking, lifestyle factors, and microsatellite instability in colon tumors. J Natl Cancer Inst. 2000;92(22):1831–6.

    Article  CAS  PubMed  Google Scholar 

  31. Satia JA, Keku T, Galanko JA, Martin C, Doctolero RT, Tajima A, Sandler RS, Carethers JM. Diet, lifestyle, and genomic instability in the North Carolina Colon Cancer Study. Cancer Epidemiol Biomarkers Prev. 2005;14(2):429–36.

    Article  CAS  PubMed  Google Scholar 

  32. Campbell PT, Jacobs ET, Ulrich CM, Figueiredo JC, Poynter JN, McLaughlin JR, Haile RW, Jacobs EJ, Newcomb PA, Potter JD, Le ML, Green RC, Parfrey P, Younghusband HB, Cotterchio M, Gallinger S, Jenkins MA, Hopper JL, Baron JA, Thibodeau SN, Lindor NM, Limburg PJ, Martinez ME, Family CC, Colon Cancer Family R. Case-control study of overweight, obesity, and colorectal cancer risk, overall and by tumor microsatellite instability status. J Natl Cancer Inst. 2010;102(6):391–400.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hughes LA, Williamson EJ, van Engeland M, Jenkins MA, Giles GG, Hopper JL, Southey MC, Young JP, Buchanan DD, Walsh MD, van den Brandt PA, Alexandra Goldbohm R, Weijenberg MP, English DR. Body size and risk for colorectal cancers showing BRAF mutations or microsatellite instability: a pooled analysis. Int J Epidemiol. 2012;41(4):1060–72.

    Article  PubMed  Google Scholar 

  34. Hoffmeister M, Blaker H, Kloor M, Roth W, Toth C, Herpel E, Frank B, Schirmacher P, Chang-Claude J, Brenner H. Body mass index and microsatellite instability in colorectal cancer: a population-based study. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2303–11.

    Article  CAS  PubMed  Google Scholar 

  35. Hanyuda A, Ogino S, Rong Qian Z, Nishihara R, Song M, Mima K, Inamura K, Masugi Y, Wu K, Meyerhardt JA, Chan AT, Fuchs CS, Giovannucci EL, Cao Y. Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. Int J Cancer. 2016;139:854–68.

    Article  CAS  PubMed  Google Scholar 

  36. Kuchiba A, Morikawa T, Yamauchi M, Imamura Y, Liao X, Chan AT, Meyerhardt JA, Giovannucci E, Fuchs CS, Ogino S. Body mass index and risk of colorectal cancer according to fatty acid synthase expression in the Nurses’ Health Study. J Natl Cancer Inst. 2012;104(5):415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut. 2011;60(3):397–411.

    Article  PubMed  Google Scholar 

  38. Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol. 2013;26(4):465–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogino S, Campbell PT, Nishihara R, Phipps AI, Beck AH, Sherman ME, Chan AT, Troester MA, Bass AJ, Fitzgerald KC, Irizarry RA, Kelsey KT, Nan H, Peters U, Poole EM, Qian ZR, Tamimi RM, Tchetgen Tchetgen EJ, Tworoger SS, Zhang X, Giovannucci EL, van den Brandt PA, Rosner BA, Wang M, Chatterjee N, Begg CB. Proceedings of the second international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control. 2015;26(7):959–72.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol. 2017;52(3):265–75.

    Article  PubMed  Google Scholar 

  41. Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet. 1991;338(8765):464–8.

    Article  CAS  PubMed  Google Scholar 

  42. Colditz GA, Manson JE, Hankinson SE. The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J Women’s Heal. 1997;6(1):49–62.

    Article  CAS  Google Scholar 

  43. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology. 1990;1(6):466–73.

    Article  CAS  PubMed  Google Scholar 

  44. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–12, 1–253.

  45. World Health Organization Classification of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer (IARC); 2010. p. 134–146.

  46. Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M, Giovannucci EL, Fuchs CS. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58(1):90–6.

    Article  PubMed  Google Scholar 

  47. Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, Poole EM, Tamimi R, Tworoger SS, Giovannucci E, Rosner B, Ogino S. Statistical methods for studying disease subtype heterogeneity. Stat Med. 2016;35(5):782–800.

    Article  PubMed  Google Scholar 

  48. Cao Y, Nishihara R, Qian ZR, Song M, Mima K, Inamura K, Nowak JA, Drew DA, Lochhead P, Nosho K, Morikawa T, Zhang X, Wu K, Wang M, Garrett WS, Giovannucci EL, Fuchs CS, Chan AT, Ogino S. Regular aspirin use associates with lower risk of colorectal cancers with low numbers of tumor-infiltrating lymphocytes. Gastroenterology. 2016;151(5):879–92.

    Article  CAS  PubMed  Google Scholar 

  49. Song M, Nishihara R, Wang M, Chan AT, Qian ZR, Inamura K, Zhang X, Ng K, Kim SA, Mima K, Sukawa Y, Nosho K, Fuchs CS, Giovannucci EL, Wu K, Ogino S. Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut. 2016;65(2):296–304.

    Article  CAS  PubMed  Google Scholar 

  50. Aleman JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology. 2014;146(2):357–73.

    Article  PubMed  Google Scholar 

  51. Hagland HR, Soreide K. Cellular metabolism in colorectal carcinogenesis: influence of lifestyle, gut microbiome and metabolic pathways. Cancer Lett. 2015;356(2 Pt A):273–80.

    Article  CAS  PubMed  Google Scholar 

  52. Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer. 2015;15(8):484–98.

    Article  CAS  PubMed  Google Scholar 

  53. Hughes LA, Simons CC, van den Brandt PA, Goldbohm RA, de Goeij AF, de Bruine AP, van Engeland M, Weijenberg MP. Body size, physical activity and risk of colorectal cancer with or without the CpG island methylator phenotype (CIMP). PLoS ONE. 2011;6(4):e18571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang D, Dubois RN. Associations between obesity and cancer: the role of fatty acid synthase. J Natl Cancer Inst. 2012;104(5):343–5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology. 2015;148(6):1244–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buron Pust A, Alison R, Blanks R, Pirie K, Gaitskell K, Barnes I, Gathani T, Reeves G, Beral V, Green J. Heterogeneity of colorectal cancer risk by tumour characteristics: large prospective study of UK women. Int J Cancer. 2017;140(5):1082–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mihaylova MM, Sabatini DM, Yilmaz OH. Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell. 2014;14(3):292–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science (80-). 2015;347(6217):78–81.

    Article  CAS  Google Scholar 

  59. Wu S, Powers S, Zhu W, Hannun YA. Substantial contribution of extrinsic risk factors to cancer development. Nature. 2016;529(7584):43–7.

    Article  CAS  PubMed  Google Scholar 

  60. Uddin S, Hussain AR, Ahmed M, Abubaker J, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Bavi P, Al-Kuraya KS. High prevalence of fatty acid synthase expression in colorectal cancers in Middle Eastern patients and its potential role as a therapeutic target. Am J Gastroenterol. 2009;104(7):1790–801.

    Article  CAS  PubMed  Google Scholar 

  61. Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 2013;52(4):585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ogino S, Nishihara R, VanderWeele TJ, Wang M, Nishi A, Lochhead P, Qian ZR, Zhang X, Wu K, Nan H, Yoshida K, Milner DA Jr, Chan AT, Field AE, Camargo CA Jr, Williams MA, Giovannucci EL. Review article: the role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology. 2016;27(4):602–11.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ikram MA, van der Lugt A, Niessen WJ, Koudstaal PJ, Krestin GP, Hofman A, Bos D, Vernooij MW. The Rotterdam Scan Study: design update 2016 and main findings. Eur J Epidemiol. 2015;30(12):1299–315.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nishihara R, VanderWeele TJ, Shibuya K, Mittleman MA, Wang M, Field AE, Giovannucci E, Lochhead P, Ogino S. Molecular pathological epidemiology gives clues to paradoxical findings. Eur J Epidemiol. 2015;30(10):1129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Snijder MB, van Dam RM, Visser M, Seidell JC. What aspects of body fat are particularly hazardous and how do we measure them? Int J Epidemiol. 2006;35(1):83–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants and staff of the Nurses’ Health Study and the Health Professionals Follow-up Study for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuji Ogino or Reiko Nishihara.

Ethics declarations

Funding

This work was supported by US National Institutes of Health (NIH) Grants [UM1 CA186107 and P01 CA87969 to Meir J. Stampfer; P01 CA55075 and UM1 CA167552 to Walter C. Willett; K07 CA190673 to R.N.; R01 CA137178 and K24 DK098311 to A.T.C.; P50 CA127003 to C.S.F.; R01 CA151993 and R35 CA197735 to S.O.], by Nodal Award from the Dana-Farber Harvard Cancer Center (to S.O.); and by grants from the Project P Fund, the Friends of the Dana-Farber Cancer Institute, the Bennett Family Fund and the Entertainment Industry Foundation through National Colorectal Cancer Research Alliance. A.H. was supported by the Japan-United States Educational Exchange Promotion Foundation (Fulbright Foundation), Japan and the U.S. T.H. was supported by a fellowship grant from the Uehara Memorial Foundation and by a grant from the Mochida Memorial Foundation for Medical and Pharmaceutical Research. Y.M. was supported by a fellowship grant of the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. A.T.C. was a Damon Runyon Clinical Investigator.

Conflict of interest

A.T.C. previously served as a consultant for Bayer Healthcare, Pozen Inc, and Pfizer Inc. This study was not funded by Bayer Healthcare, Millennium Pharmaceuticals, or Pfizer Inc. All remaining authors have declared no conflicts of interest.

Additional information

We use HUGO (Human Genome Organisation)-approved official symbols for genes (italics) and gene products (non-italics), including CTNNB1, FASN, and PPARD; all of which are described at www.genenames.org.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanyuda, A., Cao, Y., Hamada, T. et al. Body mass index and risk of colorectal carcinoma subtypes classified by tumor differentiation status. Eur J Epidemiol 32, 393–407 (2017). https://doi.org/10.1007/s10654-017-0254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-017-0254-y

Keywords

Navigation