Skip to main content

Advertisement

Log in

The current deconstruction of paradoxes: one sign of the ongoing methodological “revolution”

  • ESSAY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The current deconstruction of paradoxes is one among several signs that a profound renewal of methods for clinical and epidemiological research is taking place; perhaps for some basic life sciences as well. The new methodological approaches have already deconstructed and explained long puzzling apparent paradoxes, including the (non-existent) benefits of obesity in diabetics, or of smoking in low birth weight. Achievements of the new methods also comprise the elucidation of the causal structure of long-disputed and highly complex questions, as Berkson’s bias and Simpson’s paradox, and clarifying reasons for deep controversies, as those on estrogens and endometrial cancer, or on adverse effects of hormone replacement therapy. These are signs that the new methods can go deeper and beyond the methods in current use. A major example of a highly relevant idea is: when we condition on a common effect of a pair of variables, then a spurious association between such pair is likely. The implications of these ideas are potentially vast. A substantial number of apparent paradoxes may simply be the result of collider biases, a source of selection bias that is common not just in epidemiologic research, but in many types of research in the health, life, and social sciences. The new approaches develop a new framework of concepts and methods, as collider, instrumental variables, d-separation, backdoor path and, notably, Directed Acyclic Graphs (DAGs). The current theoretical and methodological renewal—or, perhaps, “revolution”—may be changing deeply how clinical and epidemiological research is conceived and performed, how we assess the validity and relevance of findings, and how causal inferences are made. Clinical and basic researchers, among others, should get acquainted with DAGs and related concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al-Khalili J. Paradox: the nine greatest enigmas in physics. New York: Random House; 2012.

    Google Scholar 

  2. Glymour MM, Greenland S. Causal diagrams. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott-Raven; 2008. p. 183–209.

    Google Scholar 

  3. Porta M, editor. A dictionary of epidemiology. 6th ed. New York: Oxford University Press; 2014.

    Google Scholar 

  4. Dixon JB, Egger GJ. A narrow view of optimal weight for health generates the obesity paradox. Am J Clin Nutr. 2014;99:969–70.

    Article  CAS  PubMed  Google Scholar 

  5. Pearl J. Causality: models, reasoning and inference. 2nd ed. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  6. Hernán MA, Robins JM. Causal inference. New York: Chapman & Hall/CRC; 2015. http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book.

  7. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.

    Article  CAS  PubMed  Google Scholar 

  8. Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology. 2001;12:313–20.

    Article  CAS  PubMed  Google Scholar 

  9. Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155:176–84.

    Article  PubMed  Google Scholar 

  10. Hernández-Díaz S, Schisterman EF, Hernán MA. The birth weight ‘‘paradox’’ uncovered? Am J Epidemiol. 2006;164:1115–20.

    Article  PubMed  Google Scholar 

  11. Hernández-Díaz S, Wilcox AJ, Schisterman EF, Hernán MA. From causal diagrams to birth weight-specific curves of infant mortality. Eur J Epidemiol. 2008;23:163–6.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Snoep JD, Morabia A, Hernández-Díaz S, Hernán MA, Vandenbroucke JP. A structural approach to Berkson’s fallacy and a guide to a history of opinions about it. Int J Epidemiol. 2014;43:515–21.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Greenland S. Quantifying biases in causal models: classical confounding vs. collider-stratification bias. Epidemiology. 2003;14:300–6.

    PubMed  Google Scholar 

  14. Cole SR, Platt RW, Schisterman EF, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39:417–20.

    Article  PubMed Central  PubMed  Google Scholar 

  15. VanderWeele TJ. Explanation in causal inference: methods for mediation and interaction. New York: Oxford University Press; 2015.

    Google Scholar 

  16. Lee DH, Porta M, Jacobs DR, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev. 2014;35:557–601.

    Article  CAS  PubMed  Google Scholar 

  17. Richiardi L, Barone-Adesi F, Merletti F, Pearce N. Using directed acyclic graphs to consider adjustment for socioeconomic status in occupational cancer studies. J Epidemiol Community Health. 2008;62:e14.

    Article  CAS  PubMed  Google Scholar 

  18. Pearce N, Richiardi L. Three worlds collide: Berkson’s bias, selection bias and collider bias. Int J Epidemiol. 2014;43:521–4.

    Article  PubMed  Google Scholar 

  19. Lajous M, Banack HR, Kaufman JS, Hernán MA. Should patients with chronic disease be told to gain weight? The obesity paradox and selection bias. Am J Med. 2015;128:334–6.

    Article  PubMed  Google Scholar 

  20. Porta M. The deconstruction of paradoxes, and a methodological revolution in clinical and epidemiological research. OUPblog (Oxford University Press Blog). 2014. http://blog.oup.com/2014/10/deconstruction-paradoxes-sociology-epidemiology/.

  21. Pearl J. Are economists smarter than epidemiologists? Comments on Imbens’s recent paper. Causal analysis in theory and practice [Blog]. 2014. http://www.mii.ucla.edu/causality/?p=1241.

  22. Joffe M, Gambhir M, Chadeau-Hyam M, Vineis P. Causal diagrams in systems epidemiology. Emerg Themes Epidemiol. 2012;9(1):1.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Aalen O, Røysland K, Gran J, Kouyos R, Lange T. Can we believe the DAGs? A comment on the relationship between causal DAGs and mechanisms. Stat Methods Med Res. 2014. http://smm.sagepub.com/content/early/2014/03/27/0962280213520436.full.pdf+html.

  24. Bolúmar F, Porta M. Epidemiologic methods: beyond clinical medicine, beyond epidemiology. Eur J Epidemiol. 2004;19:733–5.

    Article  PubMed  Google Scholar 

  25. Vineis P, Stringhini S, Porta M. The environmental roots of non-communicable diseases (NCDs) and the epigenetic impacts of globalization. Environ Res. 2014;133:424–30.

    Article  CAS  PubMed  Google Scholar 

  26. Hernán MA. Agent-based models for causal inference—reweighting data and theory in epidemiology. Am J Epidemiol. 2015;181:103–5.

    Article  PubMed  Google Scholar 

  27. Geneletti SG, Gallo V, Porta M, Khoury MJ, Vineis P. Assessing causal relationships in genomics: from Bradford-Hill criteria to complex gene-environment interactions and directed acyclic graphs. Emerg Themes Epidemiol. 2011;8:5. http://www.ete-online.com/content/8/1/5.

  28. Krieger N. Epidemiology and the people’s health. New York: Oxford University Press. Theory and Context; 2011.

    Book  Google Scholar 

  29. Smith GD. Epidemiology, epigenetics and the ‘Gloomy Prospect’: embracing randomness in population health research and practice. Int J Epidemiol. 2011;40:537–62.

    Article  PubMed  Google Scholar 

  30. Richmond RC, Al-Amin A, Davey Smith G, Relton C. Approaches for drawing causal inferences from epidemiological birth cohorts: a review. Early Hum Dev. 2014;90:769–80.

    Article  PubMed  Google Scholar 

  31. Vineis P, Porta M. Causal thinking, biomarkers and mechanisms of carcinogenesis. J Clin Epidemiol. 1996;49:951–6.

    Article  CAS  PubMed  Google Scholar 

  32. Greenland S, Mansournia MA. Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness. Eur J Epidemiol. 2015;. doi:10.1007/s10654-015-9995-7.

    PubMed  Google Scholar 

  33. Glass TA, Goodman SN, Hernán MA, Samet JM. Causal inference in public health. Annu Rev Public Health. 2013;34:61–75.

    Article  PubMed Central  PubMed  Google Scholar 

  34. VanderWeele TJ, Vansteelandt S, Robins JM. Marginal structural models for sufficient cause interactions. Am J Epidemiol. 2010;1717:506–14.

    Article  Google Scholar 

  35. Robins JM, Hernán MA, Brumbach B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.

    Article  CAS  PubMed  Google Scholar 

  36. Van der Weele TJ, Hernán MA. From counterfactuals to sufficient component causes and vice versa. Eur J Epidemiol. 2006;21:855–8.

    Google Scholar 

  37. Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? Epidemiology. 2006;17:360–72.

    Article  PubMed  Google Scholar 

  38. Tong S, Neale RE, Shen X, Olsen J. Challenges for epidemiologic research on the verge of a new era. Eur J Epidemiol. 2011;26:689–94.

    Article  PubMed  Google Scholar 

  39. Joffe M, Mindell J. Complex causal process diagrams for analyzing the health impacts of policy interventions. Am J Public Health. 2006;96:473–9.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Pearce N. Epidemiology in a changing world: variation, causation and ubiquitous risk factors. Int J Epidemiol. 2011;40:503–12.

    Article  PubMed  Google Scholar 

  41. Wilcox A. On the importance—and the unimportance—of birthweight. Int J Epidemiol. 2001;30:1233–41.

    Article  CAS  PubMed  Google Scholar 

  42. Victora CG, Huttly SR, Fuchs SC, Olinto MT. The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol. 1997;26:224–7.

    Article  CAS  PubMed  Google Scholar 

  43. Rundle A, Ahsan H, Vineis P. Better cancer biomarker discovery through better study design. Eur J Clin Invest. 2012;42(12):1350–9.

    Article  CAS  PubMed  Google Scholar 

  44. Mansournia MA, Hernán MA, Greenland S. Matched designs and causal diagrams. Int J Epidemiol. 2013;42:860–9.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Preston SH, Stokes A. Obesity paradox: conditioning on disease enhances biases in estimating the mortality risks of obesity. Epidemiology. 2014;25:454–61.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Renehan AG. The ‘obesity paradox’ and survival after colorectal cancer: true or false? Cancer Causes Control. 2014;25:1419–22.

    Article  PubMed  Google Scholar 

  47. Banack HR, Kaufman JS. The obesity paradox: understanding the effect of obesity on mortality among individuals with cardiovascular disease. Prev Med. 2014;62:96–102.

    Article  PubMed  Google Scholar 

  48. Moga DC, Abner EL, Brouwer ES. Dementia and “obesity paradox”: Is this for real or are we missing something? An epidemiologist’s perspective. J Am Med Dir Assoc. 2015;16:78–9.

    Article  PubMed  Google Scholar 

  49. Niedziela J, Hudzik B, Niedziela N, Gąsior M, Gierlotka M, Wasilewski J, et al. The obesity paradox in acute coronary syndrome: a meta-analysis. Eur J Epidemiol. 2014;29:801–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Röhrig N, Strobl R, Müller M, Perz S, Kääb S, Martens E, et al. Directed acyclic graphs helped to identify confounding in the association of disability and electrocardiographic findings: results from the KORA-Age study. J Clin Epidemiol. 2014;67:199–206.

    Article  PubMed  Google Scholar 

  51. Hernán MA. The hazards of hazard ratios. Epidemiology. 2010;21:13–5.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Hernán MA, Hernández-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15:615–25.

    Article  PubMed  Google Scholar 

  53. Porta M, Vandenbroucke JP, Ioannidis JPA, Sanz S, Fernandez E, Bhopal R, et al. Trends in citations to books on epidemiological and statistical methods in the biomedical literature. PLoS ONE. 2013;8(5):e61837.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Chiolero A, Kaufman JS. Metabolic mediators of body-mass index and cardiovascular risk. Lancet. 2014;383:2042.

    Article  PubMed  Google Scholar 

  55. Dahabreh IJ, Kitsios GD, Trikalinos TA, Kent DM. The complexity of ABO in coronary heart disease. Lancet. 2011;377:1493.

    Article  CAS  PubMed  Google Scholar 

  56. Hernán MA, Clayton D, Keiding N. The Simpson’s paradox unraveled. Int J Epidemiol. 2011;40:780–5.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Hernán MA, Alonso A, Logan R, Grodstein F, Michels KB, Willett WC, et al. Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology. 2008;19:766–79.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Lipsitch M, Tchetgen E, Cohen T. Negative controls. A tool for detecting confounding and bias in observational studies. Epidemiology. 2010;21:383–8.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Pearce N, Blair A, Vineis P, Ahrens W, Andersen A, Antó JM, et al. IARC monographs: 40 years of evaluating carcinogenic hazards to humans. Environ Health Perspect. 2015;123:507–14.

    PubMed Central  PubMed  Google Scholar 

  60. Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122:906–11.

    PubMed Central  PubMed  Google Scholar 

  61. VanderWeele TJ. Mediation and mechanism. Eur J Epidemiol. 2009;24:217–24.

    Article  PubMed  Google Scholar 

  62. Porta M, Álvarez-Dardet C. Epidemiology: bridges over (and across) roaring levels. J Epidemiol Community Health. 1998;52:605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Espina C, Porta P, Schüz J, Hernández-Aguado I, Percival RV, Dora C, et al. Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework. Environ Health Perspect. 2013;121:420–6.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Julia del Amo, Arnaud Chiolero, Cesar Victora and three anonymous reviewers for insightful comments to earlier versions of the manuscript. The work was supported in part by research Grants from Instituto de Salud Carlos III—FEDER (FIS PI13/00020 and CIBER de Epidemiología y Salud Pública—CIBERESP), Government of Spain; Fundació La Marató de TV3 (20132910); and Government of Catalonia (2014 SGR 1012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Porta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porta, M., Vineis, P. & Bolúmar, F. The current deconstruction of paradoxes: one sign of the ongoing methodological “revolution”. Eur J Epidemiol 30, 1079–1087 (2015). https://doi.org/10.1007/s10654-015-0068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-015-0068-8

Keywords

Navigation