Skip to main content

Advertisement

Log in

Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk

  • CANCER
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Experimental studies provided evidence about mechanisms by which cholesterol, especially high density lipoprotein cholesterol (HDL-C), could influence carcinogenesis, notably through antioxidant and anti-inflammatory properties. However, prospective studies that investigated the associations between specific lipid metabolism biomarkers and cancer risk provided inconsistent results. The objective was to investigate the prospective associations between total cholesterol (T-C), HDL-C, low density lipoprotein cholesterol, apolipoproteins A1 (apoA1) and B, and triglycerides and overall, breast and prostate cancer risk. Analyses were performed on 7,557 subjects of the Supplémentation en Vitamines et Minéraux Antioxydants Study, a nationwide French cohort study. Biomarkers of lipid metabolism were measured at baseline and analyzed regarding the risk of first primary incident cancer (N = 514 cases diagnosed during follow-up, 1994–2007), using Cox proportional hazards models. T-C was inversely associated with overall (HR1mmol/L increment = 0.91, 95 % CI 0.82–1.00; P = 0.04) and breast (HR1mmol/L increment = 0.83, 95 % CI 0.69–0.99; P = 0.04) cancer risk. HDL-C was also inversely associated with overall (HR1mmol/L increment = 0.61, 95 % CI 0.46–0.82; P = 0.0008) and breast (HR1mmol/L increment = 0.48, 95 % CI 0.28–0.83; P = 0.009) cancer risk. Consistently, apoA1 was inversely associated with overall (HR1g/L increment = 0.56, 95 % CI 0.39–0.82; P = 0.003) and breast (HR1g/L increment = 0.36, 95 % CI 0.18–0.73; P = 0.004) cancer risk. This prospective study suggests that pre-diagnostic serum levels of T-C, HDL-C and ApoA1 are associated with decreased overall and breast cancer risk. The confirmation of a role of cholesterol components in cancer development, by further large prospective and experimental studies, may have important implications in terms of public health, since cholesterol is already crucial in cardiovascular prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ApoA1:

Apolipoprotein A1

ApoB:

Apolipoprotein B

BMI:

Body mass index

CI:

Confidence interval

HDL-C:

High density lipoprotein cholesterol

HR:

Hazard ratio

LDL-C:

Low density lipoprotein cholesterol

Q:

Quartile

SU.VI.MAX:

Supplémentation en Vitamines et Minéraux Antioxydants

T-C:

Total cholesterol

References

  1. Huxley R, Lewington S, Clarke R. Cholesterol, coronary heart disease and stroke: a review of published evidence from observational studies and randomized controlled trials. Semin Vasc Med. 2002;2:315–23.

    Article  PubMed  Google Scholar 

  2. Law MR, Thompson SG. Low serum cholesterol and the risk of cancer: an analysis of the published prospective studies. Cancer Causes Control. 1991;2:253–61.

    Article  CAS  PubMed  Google Scholar 

  3. Melvin JC, Holmberg L, Rohrmann S, et al. Serum lipid profiles and cancer risk in the context of obesity: four meta-analyses. J Cancer Epidemiol. 2013;2013:823849.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bjorge T, Lukanova A, Tretli S, et al. Metabolic risk factors and ovarian cancer in the metabolic syndrome and cancer project. Int J Epidemiol. 2011;40:1667–77.

    Article  PubMed  Google Scholar 

  5. Eichholzer M, Stahelin HB, Gutzwiller F, et al. Association of low plasma cholesterol with mortality for cancer at various sites in men: 17-y follow-up of the prospective Basel study. Am J Clin Nutr. 2000;71:569–74.

    CAS  PubMed  Google Scholar 

  6. Nago N, Ishikawa S, Goto T, et al. Low cholesterol is associated with mortality from stroke, heart disease, and cancer: the Jichi Medical School Cohort Study. J Epidemiol. 2011;21:67–74.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Strohmaier S, Edlinger M, Manjer J, et al. Total serum cholesterol and cancer incidence in the metabolic syndrome and cancer project (Me-Can). PLoS One. 2013;8:e54242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kitahara CM, de Berrington GA, Freedman ND, et al. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 2011;29:1592–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Iso H, Ikeda A, Inoue M, et al. Serum cholesterol levels in relation to the incidence of cancer: the JPHC study cohorts. Int J Cancer. 2009;125:2679–86.

    Article  CAS  PubMed  Google Scholar 

  10. Jacobs EJ, Gapstur SM. Cholesterol and cancer: answers and new questions. Cancer Epidemiol Biomarkers Prev. 2009;18:2805–6.

    Article  PubMed  Google Scholar 

  11. Henriksson P, Eriksson M, Ericsson S, et al. Hypocholesterolaemia and increased elimination of low-density lipoproteins in metastatic cancer of the prostate. Lancet. 1989;2:1178–80.

    Article  CAS  PubMed  Google Scholar 

  12. Vitols S, Gahrton G, Bjorkholm M, et al. Hypocholesterolaemia in malignancy due to elevated low-density-lipoprotein-receptor activity in tumour cells: evidence from studies in patients with leukaemia. Lancet. 1985;2:1150–4.

    Article  CAS  PubMed  Google Scholar 

  13. Dessi S, Batetta B, Pulisci D, et al. Altered pattern of lipid metabolism in patients with lung cancer. Oncology. 1992;49:436–41.

    Article  CAS  PubMed  Google Scholar 

  14. Ahn J, Lim U, Weinstein SJ, et al. Prediagnostic total and high-density lipoprotein cholesterol and risk of cancer. Cancer Epidemiol Biomarkers Prev. 2009;18:2814–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Soran H, Hama S, Yadav R, et al. HDL functionality. Curr Opin Lipidol. 2012;23:353–66.

    Article  CAS  PubMed  Google Scholar 

  16. von Eckardstein A, Hersberger M, Rohrer L. Current understanding of the metabolism and biological actions of HDL. Curr Opin Clin Nutr Metab Care. 2005;8:147–52.

    Article  Google Scholar 

  17. Agnoli C, Berrino F, Abagnato CA, et al. Metabolic syndrome and postmenopausal breast cancer in the ORDET cohort: a nested case–control study. Nutr Metab Cardiovasc Dis. 2010;20:41–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Furberg AS, Veierod MB, Wilsgaard T, et al. Serum high-density lipoprotein cholesterol, metabolic profile, and breast cancer risk. J Natl Cancer Inst. 2004;96:1152–60.

    Article  CAS  PubMed  Google Scholar 

  19. Gaard M, Tretli S, Urdal P. Risk of breast cancer in relation to blood lipids: a prospective study of 31,209 Norwegian women. Cancer Causes Control. 1994;5:501–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hoyer AP, Engholm G. Serum lipids and breast cancer risk: a cohort study of 5,207 Danish women. Cancer Causes Control. 1992;3:403–8.

    Article  CAS  PubMed  Google Scholar 

  21. Inoue M, Noda M, Kurahashi N, et al. Impact of metabolic factors on subsequent cancer risk: results from a large-scale population-based cohort study in Japan. Eur J Cancer Prev. 2009;18:240–7.

    Article  PubMed  Google Scholar 

  22. Kucharska-Newton AM, Rosamond WD, Mink PJ, et al. HDL-cholesterol and incidence of breast cancer in the ARIC cohort study. Ann Epidemiol. 2008;18:671–7.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Melvin JC, Seth D, Holmberg L, et al. Lipid profiles and risk of breast and ovarian cancer in the Swedish AMORIS study. Cancer Epidemiol Biomarkers Prev. 2012;21:1381–4.

    Article  CAS  PubMed  Google Scholar 

  24. Moorman PG, Hulka BS, Hiatt RA, et al. Association between high-density lipoprotein cholesterol and breast cancer varies by menopausal status. Cancer Epidemiol Biomarkers Prev. 1998;7:483–8.

    CAS  PubMed  Google Scholar 

  25. Esposito K, Chiodini P, Capuano A, et al. Metabolic syndrome and postmenopausal breast cancer: systematic review and meta-analysis. Menopause. 2013;20:1301–9.

    Article  PubMed  Google Scholar 

  26. Mondul AM, Weinstein SJ, Virtamo J, et al. Serum total and HDL cholesterol and risk of prostate cancer. Cancer Causes Control. 2011;22:1545–52.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Van Hemelrijck M, Walldius G, Jungner I, et al. Low levels of apolipoprotein A-I and HDL are associated with risk of prostate cancer in the Swedish AMORIS study. Cancer Causes Control. 2011;22:1011–9.

    Article  PubMed  Google Scholar 

  28. Esposito K, Chiodini P, Capuano A, et al. Effect of metabolic syndrome and its components on prostate cancer risk: meta-analysis. J Endocrinol Invest. 2013;36:132–9.

    CAS  PubMed  Google Scholar 

  29. Hercberg S, Galan P, Preziosi P, et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med. 2004;164:2335–42.

    Article  CAS  PubMed  Google Scholar 

  30. Stamey TA. Second Stanford conference on international standardization of prostate-specific antigen immunoassays: September 1 and 2, 1994. Urology. 1995;45:173–84.

    Article  CAS  PubMed  Google Scholar 

  31. Le Moullec N, Deheeger M, Preziosi P, et al. Validation du manuel photos utilisé pour l’enquête alimentaire de l’étude SU.VI.MAX. Cah Nutr Diet. 1996;31:158–64.

    Google Scholar 

  32. Hercberg S. Table de composition SU.VI.MAX des aliments. Paris: Les éditions INSERM/Economica; 2005.

    Google Scholar 

  33. Kritchevsky SB, Wilcosky TC, Morris DL, et al. Changes in plasma lipid and lipoprotein cholesterol and weight prior to the diagnosis of cancer. Cancer Res. 1991;51:3198–203.

    CAS  PubMed  Google Scholar 

  34. Planella T, Cortes M, Martinez-Bru C, et al. Calculation of LDL-cholesterol by using apolipoprotein B for classification of nonchylomicronemic dyslipemia. Clin Chem. 1997;43:808–15.

    CAS  PubMed  Google Scholar 

  35. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    CAS  PubMed  Google Scholar 

  36. Huang R, Silva RA, Jerome WG, et al. Apolipoprotein A–I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol. 2011;18:416–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Aleksandrova K, Boeing H, Jenab M, et al. Metabolic syndrome and risks of colon and rectal cancer: the European prospective investigation into cancer and nutrition study. Cancer Prev Res (Phila). 2011;4:1873–83.

    Article  CAS  Google Scholar 

  38. Esposito K, Chiodini P, Capuano A, et al. Metabolic syndrome and endometrial cancer: a meta-analysis. Endocrine. 2013;. doi:10.1007/s12020-013-9973-3.

    Google Scholar 

  39. Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380:581–90.

    Article  CAS  PubMed  Google Scholar 

  40. Schatzkin A, Hoover RN, Taylor PR, et al. Serum cholesterol and cancer in the NHANES I epidemiologic followup study. National Health and Nutrition Examination Survey. Lancet. 1987;2:298–301.

    Article  CAS  PubMed  Google Scholar 

  41. Cleeman JI, Grundy SM, Becker D, Clark LT. Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Adult Treatment Panel (ATP III). Jama. 2001;285:2486–97.

    Google Scholar 

  42. Leon AS, Sanchez OA. Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc. 2001;33:S502–15.

    Article  CAS  PubMed  Google Scholar 

  43. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007.

    Google Scholar 

  44. Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347:1483–92.

    Article  CAS  PubMed  Google Scholar 

  45. Esteve E, Ricart W, Fernandez-Real JM. Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin Nutr. 2005;24:16–31.

    Article  CAS  PubMed  Google Scholar 

  46. Beynen AC, Katan MB, Van Zutphen LF. Hypo- and hyperresponders: individual differences in the response of serum cholesterol concentration to changes in diet. Adv Lipid Res. 1987;22:115–71.

    CAS  PubMed  Google Scholar 

  47. Ordovas JM, Lopez-Miranda J, Mata P, et al. Gene-diet interaction in determining plasma lipid response to dietary intervention. Atherosclerosis. 1995;118(Suppl.):S11–27.

    Article  CAS  PubMed  Google Scholar 

  48. Al-Delaimy WK, Jansen EH, Peeters PH, et al. Reliability of biomarkers of iron status, blood lipids, oxidative stress, vitamin D, C-reactive protein and fructosamine in two Dutch cohorts. Biomarkers. 2006;11:370–82.

    Article  CAS  PubMed  Google Scholar 

  49. Bairaktari E, Hatzidimou K, Tzallas C, et al. Estimation of LDL cholesterol based on the Friedewald formula and on apo B levels. Clin Biochem. 2000;33:549–55.

    Article  CAS  PubMed  Google Scholar 

  50. Binder-Foucard F, Belot A, Delafosse P, et al. National estimate of the incidence and mortality from cancer in France between 1980 and 2012. Part 1—solid tumors. Saint-Maurice: Institut de veille sanitaire; 2013.

    Google Scholar 

  51. Anderson KM, Odell PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J. 1991;121:293–8.

    Article  CAS  PubMed  Google Scholar 

  52. World Health Organization. Cardiovascular diseases (CVDs). Fact sheet no. 317. In: Media centre. World Health Organization; 2013. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 12 July 2013.

  53. World Health Organization. Cancer. Fact sheet no. 297. In: Media centre. World Health Organization. 2013. http://www.who.int/mediacentre/factsheets/fs297/en/index.html. Accessed July 12 2013.

Download references

Acknowledgments

The authors thank Gwenael Monot, Younes Esseddik, Paul Flanzy, Mohand Ait Oufella, Yasmina Chelghoum, and Than Duong Van (computer scientists), Florence Charpentier (dietitian), Nathalie Arnault, Véronique Gourlet, Fabien Szabo, Laurent Bourhis, and Stephen Besseau (statisticians), and Rachida Mehroug (logistics assistant) for their technical contribution to the SU.VI.MAX study. This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM U557); the Institut National de la Recherche Agronomique (INRA U1125); and the Université Paris 13.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Touvier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

His, M., Zelek, L., Deschasaux, M. et al. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur J Epidemiol 29, 119–132 (2014). https://doi.org/10.1007/s10654-014-9884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-014-9884-5

Keywords

Navigation