Skip to main content
Log in

Monitoring and eco-toxicity effect of paraben-based pollutants in sediments/seawater, north of the Persian Gulf

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The current work is documented as the first record of the characteristics, removal efficiency, partitioning behavior, fate, and eco-toxicological effects of paraben congeners in a municipal wastewater treatment plant (WWTP, stabilization ponds) and hospital WWTPs (septic tank and activated sludge), as well as seawater-sediments collected from runoff estuarine stations (RES) and coastal stations (CS) of the north of the Persian Gulf. The median values of Σparabens at the raw wastewater and effluent of the studied WWTPs were 1884 ng/L and 468 ng/L, respectively. The activated sludge system had a greater removal efficiency (56.10%) in removing ∑parabens than the septic tank (45.05%) and stabilization pond (35.54%). The discharge rates of methyl paraben (MeP) was computed to be 2.23, 21.18, and 9.12 g/d/1000 people for stabilization ponds, septic tank, and activated sludge, respectively. Median concentrations of Σparabens in seawater (103.42 ng/L) and sediments (322.05 ng/g dw) from RES stations were significantly larger than from CS stations (61.2 and 262.0 ng/g dw in seawater and sediments, respectively) (P < 0.05). The median of field-based koc for Σparabens was 130.81 cm3/g in RES stations and 189.51 cm3/g in CS stations. It was observed that the concentration of parabens could have negative impacts on some living aquatic populations (invertebrates and bacteria), but the risk was not significant for fishes and algae.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the summary of data supporting the findings of this study is available within the article. Detailed data are available from the corresponding author upon request.

Abbreviations

WWTP:

Wastewater treatment plant

RES:

Runoff estuarine stations

CS:

Coastal stations

Parabens:

4-Hydroxybenzoic acid

MeP:

Methyl-parabens

EtP:

Ethyl-paraben

PrP:

Propyl-parabens

BuP:

Butyl-parabens

BzP:

And benzyl-parabens

4-HB:

4-Hydroxy benzoic acid

SPM:

Suspended particulate matter

GCh:

Grit chamber

PST:

Primary settling tank

SST:

Secondary settling tank

SPE:

Solid–phase extraction

SLE:

Solid–liquid extraction

PP:

Polypropylene

ESI:

Electrospray ionization

CV:

Coefficient of variations

R 2 :

Regression coefficient

LOQs:

Limits of quantification

MRM:

Multiple reaction monitoring

EC:

Electrical conductivity

TOC:

Total organic carbon

MC:

Moisture content

IDW:

Inverse distance weighting

Kd:

Water–sediment partitioning coefficients

HQ.:

Hazard quotients

References

  • Aghadadashi, V., Molaei, S., Mehdinia, A., Mohammadi, J., Moeinaddini, M., & Riyahi Bakhtiari, A. (2019). Using GIS, geostatistics and Fuzzy logic to study spatial structure of sedimentary total PAHs and potential eco-risks; An Eastern Persian Gulf case study. Marine Pollution Bulletin., 149, 110489.

    Article  CAS  Google Scholar 

  • Albero, B., Pérez, R. A., Sánchez-Brunete, C., & Tadeo, J. L. (2012). Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain). Journal of Hazardous Materials, 239–240, 48–55.

    Article  Google Scholar 

  • Andersen, H. R., Lundsbye, M., Wedel, H., Eriksson, E., & Ledin, A. (2007). Estrogenic personal care products in a greywater reuse system. Water Science and Technology., 56(12), 45–49.

    Article  CAS  Google Scholar 

  • Argenta, T. S., Barros, A. R. M., de Carvalho, Cd. A., dos Santos, A. B., & Firmino, P. I. M. (2021). Parabens in aerobic granular sludge systems: Impacts on granulation and insights into removal mechanisms. Science of The Total Environment., 753, 142105.

    Article  CAS  Google Scholar 

  • Bergfeld, W. F., Belsito, D. V., Marks, J. G., Jr., & Andersen, F. A. (2005). Safety of ingredients used in cosmetics. Journal of the American Academy of Dermatology., 52(1), 125–132.

    Article  Google Scholar 

  • Blanco, E., Casais, Md. C., Mejuto, Md. C., & Cela, R. (2009). Combination of off-line solid-phase extraction and on-column sample stacking for sensitive determination of parabens and p-hydroxybenzoic acid in waters by non-aqueous capillary electrophoresis. Analytica Chimica Acta., 647(1), 104–11.

    Article  CAS  Google Scholar 

  • Błędzka, D., Gromadzińska, J., & Wąsowicz, W. (2014). Parabens: From environmental studies to human health. Environment International., 67, 27–42.

    Article  Google Scholar 

  • Bletsou, A. A., Asimakopoulos, A. G., Stasinakis, A. S., Thomaidis, N. S., & Kannan, K. (2013). Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece. Environmental Science and Technology, 47(4), 1824–1832.

    Article  CAS  Google Scholar 

  • Chai, K., & Ji, H. (2012). Dual functional adsorption of benzoic acid from wastewater by biological-based chitosan grafted β-cyclodextrin. Chemical Engineering Journal, 203, 309–318.

    Article  CAS  Google Scholar 

  • Chen, J., Meng, X., Bergman, A., & Halden, R. U. (2019). Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. Journal of Hazardous Materials., 365, 502–10.

    Article  CAS  Google Scholar 

  • Díaz, A. N., Algarra, M., Feria, L. S., & Sanchez, F. G. (2008). Fluorimetric determination of p-hydroxybenzoic acid in beer as α-cyclodextrin inclusion complex. Analytical Letters., 41(10), 1802–1810.

    Article  Google Scholar 

  • Dodge, L. E., Kelley, K. E., Williams, P. L., Williams, M. A., Hernández-Díaz, S., Missmer, S. A., et al. (2015). Medications as a source of paraben exposure. Reproductive Toxicology., 52, 93–100.

    Article  CAS  Google Scholar 

  • Elder, R. D. (1984). Final report on the safety assessment of methylparaben, ethylparaben, propylparaben, and butylparaben. Journal of the American College of Toxicology., 3(5), 147–209.

    Article  Google Scholar 

  • Emnet, P., Mahaliyana, A. S., Northcott, G., & Gaw, S. (2020). Organic micropollutants in wastewater effluents and the receiving coastal waters, sediments, and biota of lyttelton harbour (Te Whakaraupō), New Zealand. Archives of Environmental Contamination and Toxicology., 79(4), 461–477.

    Article  CAS  Google Scholar 

  • Eriksson, E., Andersen, H. R., Madsen, T. S., & Ledin, A. (2009). Greywater pollution variability and loadings. Ecological Engineering, 35(5), 661–669.

    Article  Google Scholar 

  • Feng, J., Zhao, J., Guo, W., Su, X., Ru, X., Dong, S., et al. (2021). Pollution characteristics, temporal records, and risks associated with parabens and mercury in sediments from the upper Huai River, Henan Province. Journal of Geochemical Exploration., 223, 106726.

    Article  CAS  Google Scholar 

  • Feng, W., Plante, A. F., & Six, J. (2013). Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry, 112(1), 81–93.

    Article  CAS  Google Scholar 

  • Feng, X., Ye, M., Li, Y., Zhou, J., Sun, B., Zhu, Y., et al. (2020). Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea. Journal of Hazardous Materials, 389, 122124.

    Article  CAS  Google Scholar 

  • Ferreira, A. M. C., Möder, M., & Laespada, M. E. F. (2011). Stir bar sorptive extraction of parabens, triclosan and methyl triclosan from soil, sediment and sludge with in situ derivatization and determination by gas chromatography–mass spectrometry. Journal of Chromatography, 1218(25), 3837–3844.

    Article  CAS  Google Scholar 

  • Gasperi, J., Geara, D., Lorgeoux, C., Bressy, A., Zedek, S., Rocher, V., et al. (2014). First assessment of triclosan, triclocarban and paraben mass loads at a very large regional scale: Case of Paris conurbation (France). Science of the Total Environment., 493, 854–861.

    Article  CAS  Google Scholar 

  • Gautam, K., & Anbumani, S. (2020) Ecotoxicological effects of organic micro-pollutants on the environment. In Current developments in biotechnology and bioengineering (pp. 481–501).

  • González-Mariño, I., Quintana, J. B., Rodríguez, I., & Cela, R. (2011). Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Water Research., 45(20), 6770–6780.

    Article  Google Scholar 

  • Gorga, M., Petrovic, M., & Barceló, D. (2013). Multi-residue analytical method for the determination of endocrine disruptors and related compounds in river and waste water using dual column liquid chromatography switching system coupled to mass spectrometry. Journal of Chromatography, 1295, 57–66.

    Article  CAS  Google Scholar 

  • Guo, Y., & Kannan, K. (2013). A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environmental Science and Technology., 47(24), 14442–14449.

    Article  CAS  Google Scholar 

  • Haman, C., Dauchy, X., Rosin, C., & Munoz, J.-F. (2015). Occurrence, fate and behavior of parabens in aquatic environments: A review. Water Research, 68, 1–11.

    Article  CAS  Google Scholar 

  • Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), 334–342.

    Article  CAS  Google Scholar 

  • Jakopin, Ž. (2021). Assessment of the endocrine-disrupting potential of halogenated parabens: An in silico approach. Chemosphere., 264, 128447.

    Article  CAS  Google Scholar 

  • Jin, H., & Zhu, L. (2016). Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake. China. Water Research., 103, 343–351.

    Article  CAS  Google Scholar 

  • Jonkers, N., Kohler, H.-P.E., Dammshäuser, A., & Giger, W. (2009). Mass flows of endocrine disruptors in the Glatt River during varying weather conditions. Environmental Pollution, 157(3), 714–23.

    Article  CAS  Google Scholar 

  • Kafaei, R., Papari, F., Seyedabadi, M., Sahebi, S., Tahmasebi, R., Ahmadi, M., et al. (2018). Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf. Iran. Science of the Total Environment., 627, 703–712.

    Article  CAS  Google Scholar 

  • Karthikraj, R., Borkar, S., Lee, S., & Kannan, K. (2018). Parabens and their metabolites in pet food and urine from New York State, United States. Environmental Science and Technology., 52(6), 3727–3737.

    Article  CAS  Google Scholar 

  • Karthikraj, R., Vasu, A. K., Balakrishna, K., Sinha, R. K., & Kannan, K. (2017). Occurrence and fate of parabens and their metabolites in five sewage treatment plants in India. Science of the Total Environment., 593–594, 592–598.

    Article  Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2008). The effect of signal suppression and mobile phase composition on the simultaneous analysis of multiple classes of acidic/neutral pharmaceuticals and personal care products in surface water by solid-phase extraction and ultra performance liquid chromatography–negative electrospray tandem mass spectrometry. Talanta, 74(5), 1299–1312.

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43(2), 363–380.

    Article  CAS  Google Scholar 

  • Kim, D., Kim, L., Kim, D., Kwak, J. I., Kim, S. W., Cui, R., et al. (2021). Species sensitivity distributions for ethylparaben to derive protective concentrations for soil ecosystems. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01024-8

    Article  Google Scholar 

  • Kim, J.-W., Ramaswamy, B. R., Chang, K.-H., Isobe, T., & Tanabe, S. (2011). Multiresidue analytical method for the determination of antimicrobials, preservatives, benzotriazole UV stabilizers, flame retardants and plasticizers in fish using ultra high performance liquid chromatography coupled with tandem mass spectrometry. Journal of Chromatography, 1218(22), 3511–3520.

    Article  CAS  Google Scholar 

  • Kung, T. A., Lee, S. H., Yang, T. C., & Wang, W. H. (2018). Survey of selected personal care products in surface water of coral reefs in Kenting National Park, Taiwan. Science of the Total Environment., 635, 1302–1307.

    Article  CAS  Google Scholar 

  • Lee, J.-W., Lee, H.-K., & Moon, H.-B. (2019). Contamination and spatial distribution of parabens, their metabolites and antimicrobials in sediment from Korean coastal waters. Ecotoxicology and Environmental Safety., 180, 185–191.

    Article  CAS  Google Scholar 

  • Leung, H. W., Minh, T. B., Murphy, M. B., Lam, J. C. W., So, M. K., Martin, M., et al. (2012). Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environment International., 42, 1–9.

    Article  CAS  Google Scholar 

  • Li, W., Gao, L., Shi, Y., Wang, Y., Liu, J., & Cai, Y. (2016). Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China. Science of the Total Environment., 539, 262–270.

    Article  CAS  Google Scholar 

  • Li, W., Shi, Y., Gao, L., Liu, J., & Cai, Y. (2015a). Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant. Journal of Hazardous Materials., 300, 29–38.

    Article  CAS  Google Scholar 

  • Li, W., Shi, Y., Gao, L., Liu, J., & Cai, Y. (2015b). Occurrence and human exposure of parabens and their chlorinated derivatives in swimming pools. Environmental Science and Pollution Research., 22(22), 17987–17997.

    Article  CAS  Google Scholar 

  • Li, W., Sun, Y., Joseph, J., Fitzloff, J. F., Fong, H. H., & van Breemen, R. B. (2003). p-Hydroxybenzoic acid alkyl esters in Andrographis paniculata herbs, commercial extracts, and formulated products. Journal of Agricultural and Food Chemistry., 51(2), 524–529.

    Article  CAS  Google Scholar 

  • Liao, C., Lee, S., Moon, H.-B., Yamashita, N., & Kannan, K. (2013b). Parabens in sediment and sewage sludge from the United States, Japan, and Korea: Spatial distribution and temporal trends. Environmental Science and Technology., 47(19), 10895–10902.

    Article  CAS  Google Scholar 

  • Liao, C., Liu, F., & Kannan, K. (2013a). Occurrence of and dietary exposure to parabens in foodstuffs from the United States. Environmental Science &amp; Technology., 47(8), 3918–3925.

    Article  CAS  Google Scholar 

  • Liao, C., Shi, J., Wang, X., Zhu, Q., & Kannan, K. (2019). Occurrence and distribution of parabens and bisphenols in sediment from northern Chinese coastal areas. Environmental Pollution., 253, 759–767.

    Article  CAS  Google Scholar 

  • Ma, W.-L., Zhao, X., Zhang, Z.-F., Xu, T.-F., Zhu, F.-J., & Li, Y.-F. (2018). Concentrations and fate of parabens and their metabolites in two typical wastewater treatment plants in northeastern China. Science of the Total Environment, 644, 754–761.

    Article  CAS  Google Scholar 

  • Madsen, T., Boyd, H. B., Nylén, D., Pedersen, A. R., Petersen, G. I., & Simonsen, F. (2001). Environmental and health assessment of substances in household detergents and cosmetic detergent products. Environmental Project., 2001(615), 221.

    Google Scholar 

  • Mutiyar, P. K., & Mittal, A. K. (2014). Risk assessment of antibiotic residues in different water matrices in India: Key issues and challenges. Environmental Science and Pollution Research, 21(12), 7723–7736.

    Article  CAS  Google Scholar 

  • Nagar, Y., Thakur, R. S., Parveen, T., Patel, D. K., Ram, K. R., & Satish, A. (2020). Toxicity assessment of parabens in Caenorhabditis elegans. Chemosphere., 246, 125730.

    Article  CAS  Google Scholar 

  • Nair, B. (2001). Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate. International Journal of Toxicology., 20, 23–50.

    Article  Google Scholar 

  • Ocaña-González, J. A., Villar-Navarro, M., Ramos-Payán, M., Fernández-Torres, R., & Bello-López, M. A. (2015). New developments in the extraction and determination of parabens in cosmetics and environmental samples. A review. Analytica Chimica Acta, 858, 1–15.

    Article  Google Scholar 

  • Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., & Wang, Z. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Science of the Total Environment., 397(1), 158–166.

    Article  CAS  Google Scholar 

  • Qing-Zhu, J., Pei-Sheng, M., Huan, Z., Shu-Qian, X., Qiang, W., & Yan, Q. (2006). The effect of temperature on the solubility of benzoic acid derivatives in water. Fluid Phase Equilibria., 250(1–2), 165–172.

    Article  Google Scholar 

  • Richardson, E. (1981). Update-frequency of preservative use in cosmetic formulas as disclosed to FDA.

  • Ruban, V., López-Sánchez, J., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (1999). Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring., 1(1), 51–56.

    Article  CAS  Google Scholar 

  • Schroeder, H., Duester, L., Fabricius, A.-L., Ecker, D., Breitung, V., & Ternes, T. A. (2020). Sediment water (interface) mobility of metal (loid) s and nutrients under undisturbed conditions and during resuspension. Journal of Hazardous Materials., 394, 122543.

    Article  CAS  Google Scholar 

  • Strémy, M., Šutová, Z., Murínová, ĽP., Richterová, D., Wimmerová, S., Čonka, K., et al. (2019). The spatial distribution of congener-specific human PCB concentrations in a PCB-polluted region. Science of the Total Environment, 651, 2292–2303.

    Article  Google Scholar 

  • Tay, K. S., Rahman, N. A., & Abas, M. R. B. (2010). Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation. Chemosphere, 81(11), 1446–1453.

    Article  CAS  Google Scholar 

  • Valle-Sistac, J., Molins-Delgado, D., Díaz, M., Ibáñez, L., Barceló, D., & Díaz-Cruz, M. S. (2016). Determination of parabens and benzophenone-type UV filters in human placenta. First description of the existence of benzyl paraben and benzophenone-4. Environment International., 88, 243–9.

    Article  CAS  Google Scholar 

  • Wang, L., Liao, C., Liu, F., Wu, Q., Guo, Y., Moon, H.-B., et al. (2012). Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries. Environmental Science and Technology., 46(21), 11584–11593.

    Article  CAS  Google Scholar 

  • Wang, W., & Kannan, K. (2016). Fate of parabens and their metabolites in two wastewater treatment plants in New York State, United States. Environmental Science and Technology., 50(3), 1174–1181.

    Article  CAS  Google Scholar 

  • Wang, X., Zhu, L., Zhong, W., & Yang, L. (2018). Partition and source identification of organophosphate esters in the water and sediment of Taihu Lake, China. Journal of Hazardous Materials., 360, 43–50.

    Article  CAS  Google Scholar 

  • Wu, Y., Sun, Q., Wang, Y., Deng, C., & Yu, C.-P. (2017). Comparative studies of aerobic and anaerobic biodegradation of methylparaben and propylparaben in activated sludge. Ecotoxicology and Environmental Safety., 138, 25–31.

    Article  CAS  Google Scholar 

  • Xiang, L., Zeng, L.-J., Du, P.-P., Wang, X.-D., Wu, X.-L., Sarkar, B., et al. (2020). Effects of rice straw biochar on sorption and desorption of di-n-butyl phthalate in different soil particle-size fractions. Science of The Total Environment., 702, 134878.

    Article  CAS  Google Scholar 

  • Xue, J., & Kannan, K. (2016). Accumulation profiles of parabens and their metabolites in fish, black bear, and birds, including bald eagles and albatrosses. Environment International, 94, 546–553.

    Article  CAS  Google Scholar 

  • Xue, J., Sasaki, N., Elangovan, M., Diamond, G., & Kannan, K. (2015). Elevated accumulation of parabens and their metabolites in marine mammals from the United States coastal waters. Environmental Science and Technology., 49(20), 12071–12079.

    Article  CAS  Google Scholar 

  • Xue, X., Xue, J., Liu, W., Adams, D. H., & Kannan, K. (2017). Trophic magnification of parabens and their metabolites in a subtropical marine food web. Environmental Science and Technology., 51(2), 780–789.

    Article  CAS  Google Scholar 

  • Yamamoto, H., Tamura, I., Hirata, Y., Kato, J., Kagota, K., Katsuki, S., et al. (2011). Aquatic toxicity and ecological risk assessment of seven parabens: Individual and additive approach. Science of the Total Environment., 410, 102–111.

    Article  Google Scholar 

  • Yan, C., Yang, Y., Zhou, J., Liu, M., Nie, M., Shi, H., et al. (2013). Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environmental Pollution., 175, 22–29.

    Article  CAS  Google Scholar 

  • Zhao, X., Qiu, W., Zheng, Y., Xiong, J., Gao, C., & Hu, S. (2019). Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary. South China. Ecotoxicology and Environmental Safety., 180, 43–52.

    Article  CAS  Google Scholar 

  • Zhen, X., Li, Y., Wang, X., Liu, L., Li, Y., Tian, C., et al. (2020). Source, fate and budget of Dechlorane Plus (DP) in a typical semi-closed sea. China. Environmental Pollution., 269, 116214.

    Article  Google Scholar 

  • Zheng, L., Zhou, Z., Rao, M., & Sun, Z. (2020). Assessment of heavy metals and arsenic pollution in surface sediments from rivers around a uranium mining area in East China. Environmental Geochemistry and Health., 42(5), 1401–1413.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to especially thank the Iran National Science Foundation (INSF) for financial support to conduct this research (Grant No. 98003549).

Funding

Iran National Science Foundation (INSF) (Grant No. 98003549).

Author information

Authors and Affiliations

Authors

Contributions

The research was designed by H. Arfaeinia, Z. Asadgol, B. Ramavandi and S. Dobaradaran. Sampling, experiment, and data collection were done by M. Behroozi, Y. Poureshgh, and F. Bahrami Asl. H. Arfaeinia, and R. Rezaei Kalantari performed the statistical analysis, H. Arfaeinia, B. Ramavandi, E. Asgari and S. Sahebih wrote the manuscript; the final manuscript was investigated, revised, and approved by all the authors.

Corresponding author

Correspondence to Hossein Arfaeinia.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Consent to participate

In this study, there was not any human/animal participant.

Consent for publication

In this study, there was not any human/animal participant.

Ethical standards

This work has received approval for research ethics from Bushehr Province University of Medical Sciences (BPUMS).

Research involving animals

No animals were involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1405 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaeinia, H., Asadgol, Z., Ramavandi, B. et al. Monitoring and eco-toxicity effect of paraben-based pollutants in sediments/seawater, north of the Persian Gulf. Environ Geochem Health 44, 4499–4521 (2022). https://doi.org/10.1007/s10653-021-01197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01197-2

Keywords

Navigation