Skip to main content
Log in

Distribution of potentially harmful elements in attic dust from the City of Coronel (Chile)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Attic dusts provide an indirect measure of airborne pollutants deposited in the urban environment. The objectives of this study are: (1) to determine the concentrations of As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn in attic dust in the City of Coronel, (2) to evaluate the source apportionment of PHE and (3) to assess the risk of health effects from exposure in adults and children. In the City of Coronel, attic dust samples were collected in 19 houses. The concentrations of As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn were measured in ICP-OES after Aqua Regia digestion of < 75 µm dust sample. The median (and the range) concentration (mg kg−1) of potentially harmful elements was: As 16 (7–72), Ba 154 (53–251), Cd 0.8 (0.25–14.5), Co 12, (8–22), Cr 38 (22–482), Cu 107 (44–1641), Mn 698 (364–1245), Ni 51 (24–1734), Pb 66 (18–393), Sr 131 (52–252), V 129 (57–376) and Zn 815 (107–9761). The exploratory data analysis shows that Ni, Cu, Cr, Zn, Pb and As distribution is dominated by anthropogenic sources and characterized by high extreme values. Principal component analysis shows four factors. One factor is geogenic, while the other three factors are associated with transport emissions and the industrial park. The resulting median of cumulative noncarcinogenic risk (HIs) value for attic dust was 3.49 for children. This is significant, as any value greater than one indicates an elevated risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguirre, L., Hervé, F., & Godoy, E. (1972). Distribution of metamorphic facies in Chile: An outline. Krystallinikum, 9(1), 7–19.

    Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? A review. Environment International, 127, 819–847. https://doi.org/10.1016/j.envint.2019.03.039

    Article  CAS  Google Scholar 

  • Balabanova, B., Stafilov, T., & Šajn, R. (2019). Enchasing anthropogenic element trackers for evidence of long-term atmospheric depositions in mine environs. Journal of Environmental Science and Health, Part A, 54(10), 988–998. https://doi.org/10.1080/10934529.2019.1611302

    Article  CAS  Google Scholar 

  • Balabanova, B., Stafilov, T., Šajn, R., & Tănăselia, C. (2017). Long-term geochemical evolution of lithogenic versus anthropogenic distribution of macro and trace elements in household attic dust. Archives of Environmental Contamination and Toxicology, 72(1), 88–107. https://doi.org/10.1007/s00244-016-0336-y

    Article  CAS  Google Scholar 

  • Bochetti, M. J., Muñoz, E., Tume, P., & Bech, J. (2018). Analysis of three indirect methods for estimating the evapotranspiration in the agricultural zone of Chillán, Chile. Obras y Proyectos, 19, 74–81.

    Google Scholar 

  • Cachada, A., Dias, A. C., Pato, P., Mieiro, C., Rocha-Santos, T., Pereira, M. E., Ferreira da Silva, E., & Duarte, A. C. (2013). Major inputs and mobility of potentially toxic elements contamination in urban areas. Environmental Monitoring and Assessment, 185(1), 279–294. https://doi.org/10.1007/s10661-012-2553-9

    Article  CAS  Google Scholar 

  • Cizdziel, J. V., & Hodge, V. F. (2000). Attics as archives for house infiltrating pollutants: Trace elements and pesticides in attic dust and soil from southern Nevada and Utah. Microchemical Journal, 64(1), 85–92. https://doi.org/10.1016/S0026-265X(99)00018-1

    Article  CAS  Google Scholar 

  • Coronas, M. V., Bavaresco, J., Rocha, J. A. V., Geller, A. M., Caramão, E. B., Rodrigues, M. L. K., & Vargas, V. M. F. (2013). Attic dust assessment near a wood treatment plant: Past air pollution and potential exposure. Ecotoxicology and Environmental Safety, 95, 153–160. https://doi.org/10.1016/j.ecoenv.2013.05.033

    Article  CAS  Google Scholar 

  • Davis, J. J., & Gulson, B. L. (2005). Ceiling (attic) dust: A “museum” of contamination and potential hazard. Environmental Research, 99(2), 177–194. https://doi.org/10.1016/j.envres.2004.10.011

    Article  CAS  Google Scholar 

  • Ferraris, F. (1981). Hoja Los Ángeles-Angol, escala 1:250.000, región del Bío-Bío. Instituto de Investigaciones Geológicas. Nº 5

  • Gabarrón, M., Faz, A., & Acosta, J. (2017). Soil or dust for health risk assessment studies in urban environment. Archives of Environmental Contamination and Toxicology, 73(3), 442–455.

    Article  Google Scholar 

  • Gaberšek, M., & Gosar, M. (2021). Towards a holistic approach to the geochemistry of solid inorganic particles in the urban environment. Science of the Total Environment, 763, 144214. https://doi.org/10.1016/j.scitotenv.2020.144214

    Article  CAS  Google Scholar 

  • Guo, X., Zheng, C.-G., & Xu, M.-H. (2004). Characterization of arsenic emissions from a coal-fired power plant. Energy and Fuels, 18(6), 1822–1826. https://doi.org/10.1021/ef049921b

    Article  CAS  Google Scholar 

  • Hernandez, H., & Rodriguez, R. (2012). Geochemical evidence for the origin of vanadium in an urban environment. Environmental Monitoring Assessment, 184(9), 5327–5342. https://doi.org/10.1007/s10661-011-2343-9

    Article  CAS  Google Scholar 

  • Herve, F. (1974). Petrology of the crystalline basement of the Nahuelbuta Mountains, south-central Chile. 北海道大学

  • Jenks, W.F. (1956) Handbook of South American Geology, vol 65. Geological Society of America

  • Long, Z., Huang, Y., Zhang, W., Shi, Z., Yu, D., Chen, Y., Liu, C., & Wang, R. (2021). Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environmental Monitoring and Assessment, 193(1), 20. https://doi.org/10.1007/s10661-020-08807-z

    Article  CAS  Google Scholar 

  • Meteorológica de Chile, D. (2016). Climatología. http://www.meteochile.gob.cl/climatologia.php. Accessed 09/24/2016

  • Mirabella, N., & Allacker, K. (2018). The assessment of urban environmental impacts through the city environmental footprint: Methodological framework and first approach to the built environment. Procedia CIRP, 69, 83–88. https://doi.org/10.1016/j.procir.2017.11.063

    Article  Google Scholar 

  • Moghtaderi, T., Aminiyan, M. M., Alamdar, R., & Moghtaderi, M. (2019). Index-based evaluation of pollution characteristics and health risk of potentially toxic metals in schools dust of Shiraz megacity, SW Iran. Human and Ecological Risk Assessment: An International Journal, 25(1–2), 410–437. https://doi.org/10.1080/10807039.2019.1568857

    Article  CAS  Google Scholar 

  • Nielsen, S. N. (2005). The Triassic Santa Juana Formation at the lower Biobío River, south central Chile. Journal of South American Earth Sciences, 19(4), 547–562. https://doi.org/10.1016/j.jsames.2005.06.002

    Article  Google Scholar 

  • Oh, S., Bade, R., Lee, H., Choi, J., & Shin, W. S. (2015). Risk assessment of metal(loid)-contaminated soils before and after soil washing. Environmental Earth Science, 74(1), 703–713. https://doi.org/10.1007/s12665-015-4075-6

    Article  CAS  Google Scholar 

  • Rodríguez-Flores, M., & Rodríguez-Castellón, E. (1982). Lead and cadmium levels in soil and plants near highways and their correlation with traffic density. Environmental Pollution Series B, Chemical and Physical, 4(4), 281–290. https://doi.org/10.1016/0143-148X(82)90014-3

    Article  Google Scholar 

  • Sajn, R. (2005). Using attic dust and soil for the separation of anthropogenicand geogenic elemental distributions in an old metallurgic area (Celje, Slovenia). Geochemistry: Exploration, Environment, Analysis 5 (1):59. https://doi.org/10.1144/1467-7873/03-050

  • Sajn, R. (2006). Factor analysis of soil and attic-dust to separate mining and metallurgy influence, Meza Valley, Slovenia. Mathematical Geology, 38(6), 735–747.

    Article  CAS  Google Scholar 

  • Shi, T., & Wang, Y. (2021). Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of the Total Environment, 755, 142367. https://doi.org/10.1016/j.scitotenv.2020.142367

    Article  CAS  Google Scholar 

  • Stafilov, T., Sajn, R., Balabanova, B., & Baceva, K. (2012). Distribution of heavy metals in attic and deposited dust in the vicinity of copper ore processing and ferronickel smelter plants in the Republic of Macedonia.

  • Suárez, M., Quinzio, L., Fritis, O., & Bonilla, R. (2003). Aportes al conocimiento de los vertebrados marinos de la Formación Quiriquina. In: Congreso Geológico Chileno

  • Tan, S. Y., Praveena, S. M., Abidin, E. Z., & Cheema, M. S. (2016). A review of heavy metals in indoor dust and its human health-risk implications. Reviews on Environmental Health, 31(4), 447–456. https://doi.org/10.1515/reveh-2016-0026

    Article  CAS  Google Scholar 

  • Tavera, J. (1960). El Triásico del valle inferior del río Biobío. Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Instituto de Geología, Publicación 18:317-345

  • Tume P, Acevedo V, Roca N, Ferraro FX, Bech J (2021) Potentially toxic elements concentrations in schoolyard soils in the city of Coronel, Chile. Environmental Geochemistry and Health. doi:https://doi.org/10.1007/s10653-021-00909-y

  • Tume, P., González, E., King, R. W., Cuitiño, L., Roca, N., & Bech, J. (2018a). Distinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano. Chile. Journal of Soils Sediments, 18(6), 2335–2349. https://doi.org/10.1007/s11368-017-1750-0

    Article  CAS  Google Scholar 

  • Tume, P., González, E., King, R. W., Monsalve, V., Roca, N., & Bech, J. (2018b). Spatial distribution of potentially harmful elements in urban soils, city of Talcahuano, Chile. Journal of Geochemical Exploration, 184, 333–344. https://doi.org/10.1016/j.gexplo.2016.12.007

    Article  CAS  Google Scholar 

  • Tume, P., Roca, N., Rubio, R., King, R., & Bech, J. (2018). An assessment of the potentially hazardous element contamination in urban soils of Arica, Chile. Journal of Geochemical Exploration, 184, 345–357. https://doi.org/10.1016/j.gexplo.2016.09.011

    Article  CAS  Google Scholar 

  • Tume, P., González, E., Reyes, F., Fuentes, J. P., Roca, N., Bech, J., & Medina, G. (2019). Sources analysis and health risk assessment of trace elements in urban soils of Hualpen, Chile. CATENA, 175, 304–316. https://doi.org/10.1016/j.catena.2018.12.030

    Article  CAS  Google Scholar 

  • USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites. OSWER,

  • USEPA. (2004). Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual, EPA/540/R/99/005. United States Environmental Protection Agency Washington DC

  • USEPA. (2020). Regional Screening Levels (RSLs): Generic Tables (November 2020). https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. Accessed 12/11/2020

  • Van Pelt, R. S., Shekhter, E. G., Barnes, M. A. W., Duke, S. E., Gill, T. E., & Pannell, K. H. (2020). Spatial and temporal patterns of heavy metal deposition resulting from a smelter in El Paso, Texas. Journal of Geochemical Exploration, 210, 106414. https://doi.org/10.1016/j.gexplo.2019.106414

    Article  CAS  Google Scholar 

  • Völgyesi, P., Jordan, G., Zacháry, D., Szabó, C., Bartha, A., & Matschullat, J. (2014). Attic dust reflects long-term airborne contamination of an industrial area: A case study from Ajka, Hungary. Applied Geochemistry, 46, 19–29. https://doi.org/10.1016/j.apgeochem.2014.03.010

    Article  CAS  Google Scholar 

  • Wheeler, A. J., Jones, P. J., Reisen, F., Melody, S. M., Williamson, G., Strandberg, B., Hinwood, A., Almerud, P., Blizzard, L., Chappell, K., Fisher, G., Torre, P., Zosky, G. R., Cope, M., & Johnston, F. H. (2020). Roof cavity dust as an exposure proxy for extreme air pollution events. Chemosphere, 244, 125537. https://doi.org/10.1016/j.chemosphere.2019.125537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Collaborative partnerships with the house owner were essential for this study’s success.

Funding

This work was partially supported by CORFO Grant No. 18CTEBI-103643.

Author information

Authors and Affiliations

Authors

Contributions

Paola Painecur contributed to sampling, data curation and statistical analysis; Alejandra Muñoz contributed to supervision, sampling and data curation; Pedro Tume contributed to conceptualization, methodology, sampling and writing—original draft preparation and editing; Tania Melipichun contributed to health risk assessment; Francesc Xavier Ferraro contributed to geology; Nuria Roca contributed to investigation and writing—reviewing; Jaume Bech contributed to supervision.

Corresponding author

Correspondence to Pedro Tume.

Ethics declarations

Conflict of interest

The authors have no potential conflict of interest to disclose.

Data availability

The data that support the findings of this work are available from the corresponding author (P. Tume), upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Painecur, P., Muñoz, A., Tume, P. et al. Distribution of potentially harmful elements in attic dust from the City of Coronel (Chile). Environ Geochem Health 44, 1377–1386 (2022). https://doi.org/10.1007/s10653-021-01164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01164-x

Keywords

Navigation