Skip to main content
Log in

Metal(loid) nanosorbents in restoration of polluted soils: geochemical, ecotoxicological, and remediation perspectives

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Nowadays, the applications of nanomaterials (NMs) are becoming the edge over others and referred as one of the pillars of emerging science and technology. Thereby, a wide array of NMs have been developed along with the products that can be used for the reclamation of contaminated terrestrial ecosystems. The NMs got a great consideration due to their peculiar characteristics and high efficacy. Therefore, this review addresses in depth the ability of metal(loid) NMs as nanosorbents along with their applications in soil remediation. Adsorption is commonly employed for the elimination of innumerable contaminants because of low expenses, reliability, and convenience. The first emphasis of this work will be the use of nanoscale meta(loid) adsorbents for contaminated soil remediation along with their geochemistry. Because NMs mediated soil remediation promises more efficient and cost-effective than conventional methods and can enhance the probability of in situ contaminants remediation. However, the extensive usage of NMs is enhancing their concentrations in the environment and get a route to enter the surrounding flora and fauna that can induce serious concerns due to the lack of absolute understanding regarding NMs interactions with living organisms. Therefore, the second focus of this work will be on the ecotoxicological impacts with special attentions on morpho-physiological alterations in edible plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from: Das et al., 2018)

Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

This is a review article, and no data were generated during manuscript preparation.

References

  • Ali, M. E., Hoque, M. E., Hossain, S. K., & Biswas, M. C. (2020). Nanoadsorbents for wastewater treatment: Next generation biotechnological solution. International Journal of Environmental Science and Technology, 17, 4095–4132.

    CAS  Google Scholar 

  • Ambrosone, A., Scotto di Vettimo, M. R., Malvindi, M. A., Roopin, M., Levy, O., Marchesano, V., et al. (2014). Impact of amorphous SiO2 nanoparticles on a living organism: Morphological, behavioral, and molecular biology implications. Frontiers in Bioengineering and Biotechnology, 2, 37.

    Google Scholar 

  • Ameen, F., Alsamhary, K., Alabdullatif, J. A., & ALNadhari, S. (2021). A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213, 112027.

    CAS  Google Scholar 

  • Ashraf, M. A., Maah, M. J., & Yusoff, I. (2014). Soil contamination, risk assessment and remediation. Environmental Risk Assessment of Soil Contamination, 25, 3–56.

    Google Scholar 

  • Baby, R., Saifullah, B., & Hussein, M. Z. (2019). Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Research Letters, 14(1), 341.

    Google Scholar 

  • Bai, Y., Rong, F., Wang, H., Zhou, Y., Xie, X., & Teng, J. (2011). Removal of copper from aqueous solutions by adsorption on elemental selenium nanoparticles. Journal of Chemical AND Engineering Data, 56(5), 2563–2568.

    CAS  Google Scholar 

  • Banfield, J. F., Bischoff, B. L., & Anderson, M. A. (1993). TiO2 accessory minerals: Coarsening, and transformation kinetics in pure and doped synthetic nanocrystalline materials. Chemical Geology, 110(1–3), 211–231.

    CAS  Google Scholar 

  • Bao-Shan, L., Chun-hui, L., Li-jun, F., Shu-chun, Q., & Min, Y. (2004). Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Journal of Forestry Research, 15(2), 138–140.

    Google Scholar 

  • Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2020). The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 25(1), 112.

    CAS  Google Scholar 

  • Borišev, I., Borišev, M., Jović, D., Župunski, M., Arsenov, D., Pajević, S., & Djordjevic, A. (2020). Nanotechnology and remediation of agrochemicals. in agrochemicals detection, treatment and remediation. Butterworth-Heinemann.

    Google Scholar 

  • Bregoli, L., Chiarini, F., Gambarelli, A., Sighinolfi, G., Gatti, A. M., Santi, P., et al. (2009). Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology, 262(2), 121–129.

    CAS  Google Scholar 

  • Cao, W., Gong, J., Zeng, G., Song, B., Zhang, P., Li, J., & Cai, Z. (2020). Potential Interactions between three common metal oxide nanoparticles and antimony (III/V) involving their uptake, distribution, and phytotoxicity to soybean. ACS Sustainable Chemistry and Engineering, 8(27), 10125–10141.

    CAS  Google Scholar 

  • Caporale, A. G., & Violante, A. (2016). Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2(1), 15–27.

    CAS  Google Scholar 

  • Das, S., Chakraborty, J., Chatterjee, S., & Kumar, H. (2018). Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environmental Science: Nano, 5(12), 2784–2808.

    CAS  Google Scholar 

  • Deng, F., Zeng, F., Chen, G., Feng, X., Riaz, A., Wu, X., & Chen, Z. H. (2021). Metalloid hazards: from plant molecular evolution to mitigation strategies. Journal of Hazardous Materials, 409, 124495.

    CAS  Google Scholar 

  • Djanaguiraman, M., Belliraj, N., Bossmann, S. H., & Prasad, P. V. (2018). High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 3(3), 2479–2491.

    CAS  Google Scholar 

  • Du, W., Wu, L., Zhao, J., Si, W., Wang, F., Liu, J., & Liu, W. (2019). Engineering the surface structure of porous indium oxide hexagonal nanotubes with antimony trioxide for highly-efficient nitrogen dioxide detection at low temperature. Applied Surface Science, 484, 853–863.

    CAS  Google Scholar 

  • Fatemi, H., Esmaiel Pour, B., & Rizwan, M. (2021). Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environmental Science and Pollution Research, 28, 1417–1425. https://doi.org/10.1007/s11356-020-10549-x

    Article  CAS  Google Scholar 

  • Fei, L. I., & Perrett, S. (2009). Effect of nanoparticles on protein folding and fibrillogenesis. International Journal of Molecular Sciences, 10(2), 646–655.

    CAS  Google Scholar 

  • Fernández, V., Gil-Pelegrín, E., & Eichert, T. (2021). Foliar water and solute absorption: An update. The Plant Journal, 105(4), 870–883.

    Google Scholar 

  • Gang, M., & Vyas, S. (2019). Heavy metal remediation by nanosorbents: A short review. Research and Reviews: Journal of Chemistry, 8(2), 15–19.

    CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Rico, C. M., & White, J. C. (2014). Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science and Technology, 48(5), 2526–2540.

    CAS  Google Scholar 

  • Greenwood, N. N., & Earnshaw, A. (1997). Chemistry of the elements (2nd ed.). Butterworth-Heinemann.

    Google Scholar 

  • Gribb, A. A., & Banfield, J. F. (1997). Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 82(7–8), 717–728.

    CAS  Google Scholar 

  • Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for environmental remediation: Materials and applications. Molecules, 23(7), 1760.

    Google Scholar 

  • Herath, I., Vithanage, M., & Bundschuh, J. (2017). Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environmental Pollution, 223, 545–559.

    CAS  Google Scholar 

  • Hochella, M. F., Jr. (2008). Nanogeoscience: From origins to cutting-edge applications. Elements, 4(6), 373–379.

    CAS  Google Scholar 

  • Hubbard, J. D., Lui, A., & Landry, M. P. (2020). Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Current Opinion in Chemical Engineering, 56, 100659.

    Google Scholar 

  • Ibrahim, R. K., Hayyan, M., AlSaadi, M. A., Hayyan, A., & Ibrahim, S. (2016). Environmental application of nanotechnology: Air, soil, and water. Environmental Science and Pollution Research, 23(14), 13754–13788.

    CAS  Google Scholar 

  • Jesitha, K., & Harikumar, P. S. (2018). Application of nano-phytoremediation technology for soil polluted with pesticide residues and heavy metals in phytoremediation. Springer.

    Google Scholar 

  • Ju Y, and Chen W (2017) A Special Issue on Emerging Nanogeosciences Nanogeosciences A Revolutionary Challenge in Geosciences. Journal of Nanoscience and Nanotechnology 17: 5919

  • Kesawat, M. S., Shivaraj, S. M., Kim, D. K., Kumar, M., Hahn, B. S., & Deshmukh, R. (2020). Metalloids and their role in the biological system. Metalloids in Plants: Advances and Future Prospects, 38, 1–17.

    Google Scholar 

  • Khajeh, M., Laurent, S., & Dastafkan, K. (2013). Nanoadsorbents: Classification, preparation, and applications (with emphasis on aqueous media). Chemical Reviews, 113(10), 7728–7768.

    CAS  Google Scholar 

  • Khan, Z. S., Rizwan, M., Hafeez, M., Ali, S., Adrees, M., Qayyum, M. F., Khalid, S., ur Rehman, M. Z., & Sarwar, M. A. (2020). Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environmental Science and Pollution Research, 27, 4958–4968. https://doi.org/10.1007/s11356-019-06673-y

    Article  CAS  Google Scholar 

  • Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy and Environmental Science, 5(8), 8075–8109.

    CAS  Google Scholar 

  • Kumar, A., Joshi, H., & Kumar, A. (2020). Remediation of arsenic by metal/metal oxide-based nanocomposites/nanohybrids: Contamination scenario in groundwater, practical challenges, and future perspectives. Separation and Purification Reviews, 50, 1–32.

    Google Scholar 

  • Kumar, V., Talreja, N., Deva, D., Sankararamakrishnan, N., Sharma, A., & Verma, N. (2011). Development of bi-metal doped micro-and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic (V) from wastewater. Desalination, 282, 27–38.

    CAS  Google Scholar 

  • Kumari, A., & Kaur, R. (2017). Germination and early growth toxicity to barley seedlings (Hordeum vulgare L.) under di-n-butyl phthalate (DBP) stress. Journal of Pharmaceutical Sciences and Research, 9(12), 2361–2366.

    CAS  Google Scholar 

  • Kumari, A., & Kaur, R. (2019). Modulation of biochemical and physiological parameters in Hordeum vulgare L. seedlings under the influence of benzyl-butyl phthalate. PeerJ, 7, e6742.

    Google Scholar 

  • Kumari, A., & Kaur, R. (2020). A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation. Plant Growth Regulation, 91, 327–347.

    CAS  Google Scholar 

  • Kumari, A., Arora, S., & Kaur, R. (2020). Comparative cytotoxic and genotoxic potential of benzyl-butyl phthalate and di-n-butyl phthalate using Allium cepa assay. Energy, Ecology and Environment, 5, 1–14.

    Google Scholar 

  • Kyzas, G. Z., & Matis, K. A. (2015). Nanoadsorbents for pollutants removal: A review. Journal of Molecular Liquids, 203, 159–168.

    CAS  Google Scholar 

  • Landi, M., Margaritopoulou, T., Papadakis, I. E., & Araniti, F. (2019). Boron toxicity in higher plants: An update. Planta, 250(4), 1011–1032.

    CAS  Google Scholar 

  • Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y. C., Braam, J., & Alvarez, P. J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry: An International Journal, 29(3), 669–675.

    CAS  Google Scholar 

  • Liu, T., Wu, K., Xue, W., & Ma, C. (2015). Characteristics and mechanisms of arsenate adsorption onto manganese oxide-doped aluminum oxide. Environmental Progress & Sustainable Energy, 34(4), 1009–1018.

    CAS  Google Scholar 

  • Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano, 6(1), 41–59.

    CAS  Google Scholar 

  • Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408(16), 3053–3061.

    CAS  Google Scholar 

  • Mahmoud, L. M., Dutt, M., Shalan, A. M., El-Kady, M. E., El-Boray, M. S., Shabana, Y. M., & Grosser, J. W. (2020). Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. South African Journal of Botany, 132, 155–163.

    CAS  Google Scholar 

  • Martínez-Fernández, D., Vítková, M., Michálková, Z., & Komárek, M. (2017). Engineered nanomaterials for phytoremediation of metal/metalloid-contaminated soils: Implications for plant physiology. In A. Ansari, S. Gill, R. Gill, R. G. Lanza, & L. Newman (Eds.), Phytoremediation (pp. 369–403). Springer.

    Google Scholar 

  • Matteucci, F., Giannantonio, R., Calabi, F., Agostiano, A., Gigli, G., & Rossi, M. (2018). Deployment and exploitation of nanotechnology nanomaterials and nanomedicine. In “AIP conference proceedings” 1990, 1, p. 020001. AIP Publishing LLC.

  • Miralles, P., Church, T. L., & Harris, A. T. (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science and Technology, 46(17), 9224–9239.

    CAS  Google Scholar 

  • Navrotsky, A. (2005). Environmental implications: nanoparticle geochemistry in water and air: nanoparticles and the environment. In “Nanotechnology and the Environment” (B. Karn, T. Masciangioli, W. Zhang, V. Colvin, P. Alivisatos, eds.) pp. 92–96. ACS Symposium Series; American Chemical Society.

  • Nwadinigwe, A. O., & Ugwu, E. C. (2018). Overview of nano-phytoremediation applications in phytoremediation. Springer.

    Google Scholar 

  • Önnby, L., Pakade, V., Mattiasson, B., & Kirsebom, H. (2012). Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Research, 46(13), 4111–4120.

    Google Scholar 

  • Panagiotaras, D., & Nikolopoulos, D. (2015). Arsenic occurrence and fate in the environment; a geochemical perspective. Journal of Earth Science & Climatic Change, 6(4), 1.

    Google Scholar 

  • Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 12.

    Google Scholar 

  • Pollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: Biosynthesis of cutin and suberin. Trends in Plant Science, 13(5), 236–246.

    CAS  Google Scholar 

  • Rajput, V. D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., & Gorovtsov, A. (2018a). Effect of nanoparticles on crops and soil microbial communities. Journal of Soils and Sediments, 18(6), 2179–2187.

    CAS  Google Scholar 

  • Rajput, V. D., Minkina, T., Suskova, S., Mandzhieva, S., Tsitsuashvili, V., Chapligin, V., & Fedorenko, A. (2018b). Effects of copper nanoparticles (CuO NPs) on crop plants: A mini review. BioNanoScience, 8(1), 36–42.

    Google Scholar 

  • Rajput, V., Chaplygin, V., Gorovtsov, A., Fedorenko, A., Azarov, A., Chernikova, N., et al. (2020). Assessing the toxicity and accumulation of bulk-and nano-CuO in Hordeum sativum L. Environmental Geochemistry and Health, 43, 1–12.

    Google Scholar 

  • Rajput, V., Chaplygin, V., Gorovtsov, A., Fedorenko, A., Azarov, A., Chernikova, N., et al. (2020). Assessing the toxicity and accumulation of bulk-and nano-CuO in Hordeum sativum L. Environmental Geochemistry and Health, 43, 1–12.

    Google Scholar 

  • Rajput, V., Minkina, T., Semenkov, I., Klink, G., Tarigholizadeh, S., & Sushkova, S. (2020). Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 43, 1–26.

    Google Scholar 

  • Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., et al. (2020d). ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environmental Geochemistry and Health, 42(1), 147–158.

    CAS  Google Scholar 

  • Ray, P. Z., & Shipley, H. J. (2015). Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 5(38), 29885–29907.

    CAS  Google Scholar 

  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485–3498.

    CAS  Google Scholar 

  • Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., & Abbas, F. (2017). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials, 322, 2–16.

    CAS  Google Scholar 

  • Saha, S., & Sarkar, P. (2012). Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. Journal of Hazardous Materials, 227, 68–78.

    Google Scholar 

  • Sarma, G. K., Gupta, S. S., & Bhattacharyya, K. G. (2019). Nanomaterials as versatile adsorbents for heavy metal ions in water: A review. Environmental Science and Pollution Research, 26(7), 6245–6278.

    CAS  Google Scholar 

  • Sebastian, A., Nangia, A., & Prasad, M. N. V. (2019). Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice. Journal of Hazardous Materials, 371, 261–272.

    CAS  Google Scholar 

  • Sebastian, A., Nangia, A., & Prasad, M. N. V. (2020). Advances in agrochemical remediation using nanoparticles in agrochemicals detection, treatment and remediation. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2021). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants, 10(1), 2.

    CAS  Google Scholar 

  • Sheet, I., Kabbani, A., & Holail, H. (2014). Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia, 50(5), 130–138.

    CAS  Google Scholar 

  • Siddiqui, M. H., & Al-Whaibi, M. H. (2015). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences, 21(1), 13–17.

    Google Scholar 

  • Srivastav, A., Yadav, K. K., Yadav, S., Gupta, N., Singh, J. K., Katiyar, R., & Kumar, V. (2018). Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects. In A. Ansari, S. Gill, R. Gill, R. G. Lanza, & L. Newman (Eds.), Phytoremediation (pp. 369–403). Cham: Springer.

    Google Scholar 

  • Sun, Q., Li, Z., Searles, D. J., Chen, Y., Lu, G., & Du, A. (2013). Charge-controlled switchable CO2 capture on boron nitride nanomaterials. Journal of the American Chemical Society, 135(22), 8246–8253.

    CAS  Google Scholar 

  • Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V., & Kannan, N. (2012). Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research, 14(12), 1294.

    Google Scholar 

  • Sweetman, M. J., May, S., Mebberson, N., Pendleton, P., Vasilev, K., Plush, S. E., & Hayball, J. D. (2017). Activated carbon, carbon nanotubes and graphene: Materials and composites for advanced water purification. C-Journal of Carbon Research, 3(2), 18.

    Google Scholar 

  • Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2015). Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Piochemistry: PB, 96, 189–198. https://doi.org/10.1016/j.plaphy.2015.07.026

    Article  CAS  Google Scholar 

  • Trujillo-Reyes, J., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Supported and unsupported nanomaterials for water and soil remediation: Are they a useful solution for worldwide pollution? Journal of Hazardous Materials, 280, 487–503.

    CAS  Google Scholar 

  • Vaculík, M., Lukačová, Z., Bokor, B., Martinka, M., Tripathi, D. K., & Lux, A. (2020). Alleviation mechanisms of metal (loid) stress in plants by silicon: A review. Journal of Experimental Botany, 71(21), 6744–6757.

    Google Scholar 

  • Wu, X., Tan, X., Yang, S., Wen, T., Guo, H., Wang, X., & Xu, A. (2013). Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides. Water Research, 47(12), 4159–4168.

    CAS  Google Scholar 

  • Xing, R., Li, K. L., Zhou, Y. F., Su, Y. Y., Yan, S. Q., Zhang, K. L., et al. (2016). Impact of fluorescent silicon nanoparticles on circulating hemolymph and hematopoiesis in an invertebrate model organism. Chemosphere, 159, 628–637.

    CAS  Google Scholar 

  • Yazdi, M. H., Sepehrizadeh, Z., Mahdavi, M., Shahverdi, A. R., & Faramarzi, M. A. (2016). Metal, metalloid, and oxide nanoparticles for therapeutic and diagnostic oncology. Nano Biomedicine and Engineering, 8(4), 246–267.

    CAS  Google Scholar 

  • Zahedi, S. M., Hosseini, M. S., Meybodi, N. D. H., & da Silva, J. A. T. (2019). Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. South African Journal of Botany, 124, 350–358.

    CAS  Google Scholar 

  • Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. Biotech, 9(3), 73.

    Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task in the field of scientific activity (no. 0852-2020-0029) and the Russian Foundation for Basic Research project (no. 19-05-50097).

Funding

The research was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task in the field of scientific activity (no. 0852–2020-0029) and the Russian Foundation for Basic Research project (no. 19-05-50097).

Author information

Authors and Affiliations

Authors

Contributions

AK, VDR, and TM were involved in idea generation. AK, PK, VDR, and SNS were involved in manuscript preparation. All the authors reviewed and edited the content.

Corresponding author

Correspondence to Vishnu D. Rajput.

Ethics declarations

Conflict of interest

All the authors declare that there are conflicts of interest whatsoever.

Human and animal rights

Presented work does not involve animal subjects.

Consent to participate and consent to publish

All authors were active involved in this work and given consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Kumari, P., Rajput, V.D. et al. Metal(loid) nanosorbents in restoration of polluted soils: geochemical, ecotoxicological, and remediation perspectives. Environ Geochem Health 44, 235–246 (2022). https://doi.org/10.1007/s10653-021-00996-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00996-x

Keywords

Navigation