Skip to main content

Advertisement

Log in

Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Assessment of spatial patterns of potentially toxic metals is one of the most urgent tasks in soil chemistry. In this study, descriptive statistics and three methods of multivariate statistical analysis, such as the hierarchical cluster analysis (HCA), correlation analysis, and conditional inference tree (CIT), were used to identify patterns and potential sources of heavy metals (Co, Ni, Cu, Cr, Pb, MnO, and Zn). The investigation was carried out on 81 sample points, using 20 testing parameters. A strong positive correlation found among Ni, Cu, Zn, and HCA results has confirmed the common origin of the elements from waste discharge. Hierarchical CA divided the 81 test sites into 5 classes based on the soil quality and HMs contamination similarity. Regression trees for Cr, Pb, Zn, and Cu were verified by the splitting factor including HMs content and soil chemistry factors. The CIT has revealed that the elements (Cr, Pb, Zn, and Cu) concentration values are split at the first level by some other metal, indicating common anthropogenic impact resulting from industrial waste discharges. The factors at the next hierarchical level of splitting, in addition to the HMs, include compounds belonging to soil chemistry variables (SiO2, Al2O3, and K2O). The CIT nonlinear regression model is in good agreement with the data: R2 values for log-transformed concentrations of Cr, Pb, Zn, and Cu are equal to 0.775; 0.774; 0.775; 0.804, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  • Alekseenko, V. A., & Alekseenko, L. P. (2003). Geochemical barriers. Moscow: Logos. (in Russian).

    Google Scholar 

  • Ali, M. H., Mustafa, A.-R.A., & El-Sheikh, A. A. (2016). Geochemistry and spatial distribution of selected heavy metals in surface soil of Sohag, Egypt: A multivariate statistical and GIS approach. Environmental Earth Sciences, 75, 1257. https://doi.org/10.1007/s12665-016-6047-x.

    Article  CAS  Google Scholar 

  • Attia, O. E. A., & Ghrefat, H. (2013). Assessing heavy metal pollution in the recent bottom sediments of Mabahiss Bay, North Hurghada, Red Sea Egypt. Environmental Monitoring and Assessment, 185, 9925–9934. https://doi.org/10.1007/s10661-013-3302-4.

    Article  CAS  Google Scholar 

  • Barbieri, M., Sappa, G., Vitale, S., Parisse, B., & Battistel, M. (2014). Soil control of trace metals concentrations in landfills: A case study of the largest landfill in Europe, Malagrotta Rome. Journal of Geochemical Exploration., 143, 146–154. https://doi.org/10.1016/j.gexplo.2014.04.001.

    Article  CAS  Google Scholar 

  • Basta, N. T., Ryan, J. A., & Chaney, L. (2005). Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. Journal of Environmental Quality, 34, 49–63.

    Article  CAS  Google Scholar 

  • Bauer, T. V., Linnik, V. G., Minkina, T. M., Mandzhieva, S. S., & Nevidomskaya, D. G. (2018). Ecological-Geochemical studies of technogenic soils in the flood plain landscapes of the Seversky Donets Lower Don Basin. Geochemistry International, 56(10), 992–1002. https://doi.org/10.1134/S001670291810004X.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18. https://doi.org/10.1016/j.jcis.2004.04.005.

    Article  CAS  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, California: Wadsworth Inc.

    Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (1999). Canadian soil quality guidelines for the protection of environmental and human health: Chromium (total 1997) (VI 1999). In Canadian environmental quality guidelines. Winnipeg: Canadian Council of Ministers of the Environment. http://ceqg-rcqe.ccme.ca/download/en/262/. Accessed 5 December 2019.

  • De’ath, G., & Fabricius, K.E. . (2000). Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81, 3178–3192. https://doi.org/10.2307/177409.

    Article  Google Scholar 

  • Dolezalova Weissmannova, H., Mihocova, S., Chovanec, P., & Pavlovsky, J. (2019). Potential ecological Risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech Republic. International Journal of Environmental Research and Public Health, 16(22), 1–19. https://doi.org/10.3390/ijerph16224495.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324. https://doi.org/10.1016/S0269-7491(00)00243-8.

    Article  CAS  Google Scholar 

  • Ghosh, P., Samanta, A. N., & Ray, S. (2011). Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination, 266(1–3), 213–217. https://doi.org/10.1016/j.desal.2010.08.029.

    Article  CAS  Google Scholar 

  • GN 2.1.7.2041–06. (2006) Maximum allowable concentration (MAC) of chemicals in the soil. Moscow: Federal center for hygiene and epidemiology of rospotrebnadzor. (in Russian).

  • GN 2.1.7.2511–09. (2009) Approxible Permissible Concentrations (APC) of Chemical Matters in Soil. Moscow: Federal center for hygiene and epidemiology of rospotrebnadzor. (in Russian).

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • GOST (State Standard) 17.4.4.02–84 (2008). Nature Protection. Methods of Sampling and Sample Preparation for Chemical, Bacteriological, and Helmintologic Analysis. Standardinform, Moscow. (in Russian).

  • Grigoriev, N. A. (2009). Chemical element distribution in the upper continental crust. Ekaterinburg: UB RAS. (in Russian).

    Google Scholar 

  • Harter, R. D. (1983). Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Science Society of America Journal, 47, 47–51. https://doi.org/10.2136/sssaj1983.03615995004700010009x.

    Article  CAS  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning data mining, inference, and prediction (2nd ed.). Springer: New York.

    Google Scholar 

  • Hothorn, T., Hornik, K, Strobl, Carolin & Zeileis A. (2013). Party: A laboratory for recursive partytioning, http://cran.r-project.org/web/packages/party/party.pdf

  • Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), 651–674. https://doi.org/10.1198/106186006X133933.

    Article  Google Scholar 

  • Hou, D., O’Connor, D., Nathanail, P., Tian, L., & Ma, Y. (2017). Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environmental Pollution, 231, 1188–1200. https://doi.org/10.1016/j.envpol.2017.07.021.

    Article  CAS  Google Scholar 

  • Hu, Y. A., & Cheng, H. F. (2013). Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environmental Science and Technology, 47, 3752–3760. https://doi.org/10.1021/es304310k.

    Article  CAS  Google Scholar 

  • ISO 10390, 2005. Soil Quality – Determination of pH.

  • ISO 13317–2, 2001. Determination of Particle Size Distribution by Gravitational Liquid Sedimentation Methods – Part 2: Fixed Pipette Method.

  • ISO 14235, 1998. Soil Quality – Determination of Organic Carbon by Sulfochromic Oxidation.

  • ISO NF EN 23470, 2011. Soil Quality – Determination of Effective Cation Exchange Capacity (CEC) and Exchangeable Cations.

  • IUSS Working Group WRB, 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Jin, Y., O’Connor, D., Ok, Y. S., Tsang, D. C. W., Liu, A., & Hou, D. (2019). Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environment International, 124, 320–328. https://doi.org/10.1016/j.envint.2019.01.024.

    Article  CAS  Google Scholar 

  • Konstantinova, E., Burachevskaya, M., Mandzhieva, S., Bauer, T., Minkina, T., Chaplygin, V., et al. (2020). Geochemical transformation of soil cover and vegetation of a drained floodplain lake affected by long-term dumping of effluents from rayon industry plant (lower Don Basin, Southern Russia). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00683-3.

    Article  Google Scholar 

  • Kubosova, K., Komprda, J., Jarkovsky, J., Sanka, M., Hajek, O., Dusek, L., et al. (2009). Spatially resolved Distribution models of POP concentrations in soil: A stochastic approach using regression trees. Environmental Science and Technology, 43, 9230–9236. https://doi.org/10.1021/es902076y.

    Article  CAS  Google Scholar 

  • Lasat, M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    CAS  Google Scholar 

  • Lee, S. Z., Chang, L., Yang, H. H., Chen, C. M., & Liu, M. C. (1998). Adsorption characteristics of lead onto soils. Journal of Hazardous Materials, 63, 37–49. https://doi.org/10.1016/S0304-3894(98)00203-9.

    Article  CAS  Google Scholar 

  • Li, J., He, M., Han, W., & Gu, Y. (2009). Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. Journal of Hazardous Materials, 164, 976–981. https://doi.org/10.1016/j.jhazmat.2008.08.112.

    Article  CAS  Google Scholar 

  • Liu, L., Liu, Q., Ma, J., Wu, H., Qu, Y., Gong, Y., et al. (2020). Heavy metal(loid)s in the topsoil of urban parks in Beijing. China: Concentrations, potential sources, and risk assessment, Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.114083.

    Book  Google Scholar 

  • Liu, X., Wu, J., & Xu, J. (2006). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution, 141, 257–264. https://doi.org/10.1016/j.envpol.2005.08.048.

    Article  CAS  Google Scholar 

  • Lund, L. J., Betty, E. E., Page, A. L., & Elliot, R. A. (1981). Occurrence of high Cd levels in soil and its accumulation by vegetation. Journal of Environmental Quality, 10, 551–556. https://doi.org/10.2134/jeq1981.00472425001000040027x.

    Article  CAS  Google Scholar 

  • Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., Brahmia, Z., et al. (2010). Spatial distribution of heavy metal concentrations in urban suburban and agricultural soils in a Mediterranean city of Algeria. Environmental Pollution, 158, 2294–2301. https://doi.org/10.1016/j.envpol.2010.02.001.

    Article  CAS  Google Scholar 

  • McLaren, R. G., Williams, J. G., & Swift, R. S. (1983). The adsorption of copper by soil samples from Scotland at low equilibrium solution concentrations. Geoderma, 31, 97–106. https://doi.org/10.1016/0016-7061(83)90001-0.

    Article  CAS  Google Scholar 

  • Minkina, T., Nevidomskaya, D., Bauer, T., Shuvaeva, V., Soldatov, A., Mandzhieva, S., et al. (2018). Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction. Science of the Total Environment., 634, 1165–1173. https://doi.org/10.1016/j.scitotenv.2018.04.118.

    Article  CAS  Google Scholar 

  • Minkina, T. M., Nevidomskaya, D. G., Fedorov, Yu. A., Mandzhieva, S. S., Chaplygin, V. A., Bauer, T. V., & Burachevskaya, M. V. (2017). Heavy metals in the soil–plant system of the Don River estuarine region and the Taganrog Bay coast. Journal Soils Sediments, 17, 1474–1491. https://doi.org/10.1007/s11368-016-1381-x.

    Article  Google Scholar 

  • Minkina, T. M., Soldatov, A. V., Nevidomskaya, D. G., Motuzova, G. V., Podkovyrina, Yu. S., & Mandzhieva, S. S. (2016). New approaches to studying heavy metals in soils by X-ray absorption spectroscopy (XANES) and extractive fractionation. Geochemistry International, 54(2), 197–204. https://doi.org/10.1134/S001670291512006X.

    Article  CAS  Google Scholar 

  • Peijnenburg, W. J., Baerselman, R., de Groot, A. C., Jager, T., Posthuma, L., & Van Veen, R. P. (1999). Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. Ecotoxicology and Environmental Safety, 44, 294–310. https://doi.org/10.1006/eesa.1999.1838.

    Article  CAS  Google Scholar 

  • Privalenko, V. V., & Cherkashina, I. F. (2012). Rekul’tivacija shlamonakopitelej himicheskih zavodov v Rostovskoj oblasti [Recultivation of Rostov region chemical industry waste fields]. In T. S. Chibrik (Ed.), Biologicheskaja rekul’tivacija i monitoring narushennyh zemel’ [Biological recultivation and monitoring of disturbed lands] (pp. 205–209). Yekaterinburg: Publishing House of the Ural University.

    Google Scholar 

  • Privalenko, V. V., Mazurenko, V. T., Panaskov, V. I., Moshkin, V. M., Mukhin, N. V., & Senin, B. K. (2000). Ecological problems of the city of Kamensk-Shakhtinsky. Rostov-on-Don: Tsvetnaya pechat. (in Russian).

    Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R. Hoboken: Wiley.

    Book  Google Scholar 

  • Ryo, M., & Rillig, M. C. (2017). Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere. https://doi.org/10.1002/ecs2.1976.

    Article  Google Scholar 

  • Saby, N. P. A., Thioulouse, J., Jolivet, C. C., Ratie, C., Boulonne, L., Bispo, A., & Arrouays, D. (2009). Multivariate analysis of the spatial patterns of 8 trace elements using the French soil monitoring network data. Science of The Total Environment, 407, 5644–5652. https://doi.org/10.1016/j.scitotenv.2009.07.002.

    Article  CAS  Google Scholar 

  • Salah, E. A., Turki, A. M., & Mahal, S. N. (2015). Chemometric evaluation of the heavy metals in urban soil of Fallujah city, Iraq. Journal of Environmental Protection, 6, 1279–1292. https://doi.org/10.4236/jep.2015.611112.

    Article  CAS  Google Scholar 

  • Savelyev, A. A., Mukharamova, S. S., Pilyugin, A. G., & Chizhikova, N. A. (2012). Geostatistical data analysis in ecology and nature management (using the R package). Kazan: Kazan University. (in Russian).

    Google Scholar 

  • Shan, Y., Tysklind, M., Hao, F., Ouyang, W., Chen, S., & Lin, C. (2013). Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soils and Sediments, 13, 720–729. https://doi.org/10.1007/s11368-012-0637-3.

    Article  CAS  Google Scholar 

  • Strasser, H., & Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathematical Methods of Statistics, 8, 220–250.

    Google Scholar 

  • Venables, W. N., & Smith, D. M. (2009). An introduction to R: A programming environment for data analysis and graphics. Bristol, UK: Network Theory Ltd.

    Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91. https://doi.org/10.1016/j.envpol.2010.09.019.

    Article  CAS  Google Scholar 

  • Zhang, C., & Yang, Y. (2020). Modeling the spatial variations in anthropogenic factors of soil heavy metal accumulation by geographically weighted logistic regression. Science of The Total Environment, 717, 137096. https://doi.org/10.1016/j.scitotenv.2020.137096.

    Article  CAS  Google Scholar 

  • Zhang, X. Y., Lin, F. F., Jiang, Y. G., Wang, K., & Wong, M. T. F. (2008). Assessing soil Cu content and anthropogenic influences using decision tree analysis. Environmental Pollution, 156, 1260–1267. https://doi.org/10.1016/j.envpol.2008.03.009.

    Article  CAS  Google Scholar 

  • Zhong, B. Q., Liang, T., Wang, L. Q., & Li, K. X. (2014). Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Science of The Total Environment, 490, 422–434. https://doi.org/10.1016/j.scitotenv.2014.04.127.

    Article  CAS  Google Scholar 

  • Zhou, J., Ma, D., Pan, J., Nie, W., & Wu, K. (2008). Application of multivariate statistical approach to identify heavy metals sources in sediments and waters: A case study in Yangzhong, China. Environmental Geology, 54, 373–380. https://doi.org/10.1007/s00254-007-0824-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Science and Higher Education of the Russian Federation (No. 0852-2020-0029), the Russian Foundation for Basic Research (Grant No.19-34-60041) and budget theme 0137-2019-0008 (GEOKHI RAS).

Funding

This research was sponsored by the Ministry of Science and Higher Education of the Russian Federation (No. 0852-2020-0029), the Russian Foundation for Basic Research (Grant No.19-34-60041) and budget theme 0137-2019-0008 (GEOKHI RAS).

Author information

Authors and Affiliations

Authors

Contributions

Vitaly Linnik was involved in methodology, original draft preparation, writing—review & editing. Anatoly Saveliev helped in software and formal analysis, writing—review & editing. Tatiana Bauer contributed to formal analysis, investigation, writing—review & editing. Tatiana Minkina was involved in conceptualization, supervision, writing—review & editing. Saglara Mandzhieva helped in investigation, data curation, formal analysis, supervision.

Corresponding author

Correspondence to Saglara S. Mandzhieva.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable since the manuscript has not been involved the use of any animal or human data or tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnik, V.G., Saveliev, A.A., Bauer, T.V. et al. Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods. Environ Geochem Health 44, 511–526 (2022). https://doi.org/10.1007/s10653-021-00853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00853-x

Keywords

Navigation