Skip to main content

Advertisement

Log in

Characteristics, emission sources and health risk assessment of trace elements in size-segregated aerosols during haze and non-haze periods at Ningbo, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

To characterize trace elements from inhalable particles and to estimate human health risks, airborne particles at an urban area of Ningbo city during haze and non-haze periods from November 2013 to May 2014 were collected by a nine-stage sampler. Seventeen trace elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb) were measured by inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of trace elements are in the ranges of 0.51 ng m−3 (Co) ~ 1.53 µg m−3 (K) for fine particles (Dp < 2.1 μm), and 1.07 ng m−3 (Co) ~ 4.96 µg m−3 (K) for coarse particles (2.1 μm < Dp < 9.0 μm) during the haze days, which are 1.15 –4.30 and 1.23– 7.83-fold as those of non-haze days, respectively. These elements could be divided into crustal elements (Na, Mg, Al, Ca, Ti, Fe and Co), non-crustal elements (Cu, Zn, Cd and Pb) and mixed elements (K, V, Cr, Mn, Ni and As) according to their enrichment factor values (EFs) and size distribution characteristics. Five emission sources of trace elements were identified by positive matrix factorization (PMF) modeling. The main sources of trace elements in fine particles are traffic emission (21.7%), coal combustion (23.6%) and biomass burning (32.1%); however, soil dust (61.5%), traffic emission (21.9%) and industry emissions (11.8%) are the main contributors for coarse particles. With the help of the multiple-path particle dosimetry (MPPD) model, it was found that deposition fractions of seventeen measured elements in the pulmonary region were in the range of 12.4%–15.1% and 6.66% –12.3% for the fine and coarse particles, respectively. The human health risk assessment (HRA) was employed according to the deposition concentration in the pulmonary region. The non-carcinogenic risk (HI) was below the safety limit (1.00). Nonetheless, the excess lifetime carcinogenic risk (ELCR) for adults increased by 2.42-fold during the haze days (2.06 × 10–5) as compared to that of non-haze days (8.50 × 10–6) in fine particles. Cr (VI) and As together contributed 96.5% and 96.3% of the integrated cancer risks during the haze and non-haze periods, respectively. Moreover, the related ELCR values in coarse particles were 36.7% and 62.8% of those in the fine particles for the non-haze period and haze period, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source to the sum of elements in each size bin

Fig. 5

source to the sum of elements in fine, coarse and large particles during the haze and non-haze days

Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreae, M. O., Andreae, T. W., Annegarn, H., Beer, J., Cachier, H., Le Canut, P., et al. (1998). Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research-Atmospheres, 103, 32119–32128.

    Article  CAS  Google Scholar 

  • Behera, S. N., Betha, R., Huang, X., & Balasubramanian, R. (2015). Characterization and estimation of human airway deposition of size-resolved particulate-bound trace elements during a recent haze episode in Southeast Asia. Environmental Science and Pollution Research., 22, 4265–4280.

    Article  CAS  Google Scholar 

  • Behera, S. N., Cheng, J., Huang, X., Zhu, Q., Liu, P., & Balasubramanian, R. (2015). Chemical composition and acidity of size-fractionated inorganic aerosols of 2013–14 winter haze in Shanghai and associated health risk of toxic elements. Atmospheric Environment., 122, 259–271.

    Article  CAS  Google Scholar 

  • Betha, R., Behera, S. N., & Balasubramanian, R. (2014). Southeast Asian Smoke Haze: Fractionation of Particulate-Bound Elements and Associated Health Risk. Environmental Science & Technology., 48, 4327–4335.

    Article  CAS  Google Scholar 

  • Cao, J.-J., Shen, Z.-X., Chow, J. C., Watson, J. G., Lee, S.-C., Tie, X.-X., et al. (2012). Winter and Summer PM2.5 Chemical Compositions in Fourteen Chinese Cities. Journal of the Air & Waste Management Association., 62, 1214–1226.

    Article  CAS  Google Scholar 

  • Cheng, H.-G., Zhou, T., Li, Q., Lu, L., & Lin, C.-Y. (2014). Anthropogenic Chromium Emissions in China from 1990 to 2009. PLoS ONE, 9, e87753.

    Article  CAS  Google Scholar 

  • Fang, G.-C., Huang, Y.-L., & Huang, J.-H. (2010). Study of atmospheric metallic elements pollution in Asia during 2000–2007. Journal of Hazardous Materials., 180, 115–121.

    Article  CAS  Google Scholar 

  • Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., et al. (2008). Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta China. Atmospheric Environment, 42, 2023–2036.

    Article  CAS  Google Scholar 

  • Gao, Y., Lee, S.-C., Huang, Y., Chow, J. C., & Watson, J. G. (2016). Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. Atmospheric Research, 170, 112–122.

    Article  CAS  Google Scholar 

  • Greene, N. A., & Morris, V. R. (2006). Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. International Journal of Environmental Research and Public Health, 3, 86–97.

    Article  CAS  Google Scholar 

  • Ham, W. A., Ruehl, C. R., & Kleeman, M. J. (2011). Seasonal Variation of Airborne Particle Deposition Efficiency in the Human Respiratory System. Aerosol Science and Technology, 45, 795–804.

    Article  CAS  Google Scholar 

  • Ho, K. F., Lee, S. C., Cao, J. J., Chow, J. C., Watson, J. G., & Chan, C. K. (2006). Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Science of The Total Environment, 355, 276–287.

    Article  CAS  Google Scholar 

  • Hofmann, W. (2011). Modelling inhaled particle deposition in the human lung-A review. Journal of Aerosol Science, 42, 693–724.

    Article  CAS  Google Scholar 

  • Hu, M., Peng, J. F., Sun, K., Yue, D. L., Guo, S., Wiedensohler, A., & Wu, Z. J. (2012). Estimation of Size-Resolved Ambient Particle Density Based on the Measurement of Aerosol Number, Mass, and Chemical Size Distributions in the Winter in Beijing. Environmental Science & Technology, 46, 9941–9947.

    CAS  Google Scholar 

  • Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J. J., Han, Y., et al. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218–222.

    Article  CAS  Google Scholar 

  • Huang, R. J., Cheng, R., Jing, M., Yang, L., Li, Y.-J., Chen, Q., et al. (2018). Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing. Environmental Science & Technology, 52, 10967–10974.

    Article  CAS  Google Scholar 

  • Huang, S., Tu, J., Liu, H., Hua, M., Liao, Q., Feng, J., et al. (2009). Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta East China. Atmospheric Environment, 43, 5781–5790.

    Article  CAS  Google Scholar 

  • Jeong, C. H., Wang, J. M., Hilker, N., Debosz, J., Sofowote, U., Su, Y. S., et al. (2019). Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmospheric Environment, 198, 55–69.

    Article  CAS  Google Scholar 

  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367.

    Article  CAS  Google Scholar 

  • Kastury, F., Smith, E., & Juhasz, A. L. (2017). A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Science of the Total Environment, 574, 1054–1074.

    Article  CAS  Google Scholar 

  • Khare, P., & Baruah, B. P. (2010). Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmospheric Research, 98, 148–162.

    Article  CAS  Google Scholar 

  • Khillare, P. S., & Sarkar, S. (2012). Airborne inhalable metals in residential areas of Delhi, India: distribution, source apportionment and health risks. Atmospheric Pollution Research, 3, 46–54.

    Article  CAS  Google Scholar 

  • Li, H. M., Wang, J., Wang, Q. G., Qian, X., Qian, Y., Yang, M., et al. (2015). Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing China. Atmospheric Environment, 103, 339–346.

    Article  CAS  Google Scholar 

  • Li, X. R., Wang, L. L., Wang, Y. S., Wen, T. X., Yang, Y. J., Zhao, Y.-N., & Wang, Y. F. (2012). Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmospheric Environment, 50, 278–286.

    Article  CAS  Google Scholar 

  • Li, X. Y., Yan, C. Q., Patterson, R. F., Zhu, Y. J., Yao, X. H., Zhu, Y. F., et al. (2016). Modeled deposition of fine particles in human airway in Beijing China. Atmospheric Environment, 124, 387–395.

    Article  CAS  Google Scholar 

  • Liu, Y. Y., Xing, J., Wang, S. X., Fu, X., & Zheng, H. T. (2018). Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environmental Pollution, 239, 544–553.

    Article  CAS  Google Scholar 

  • Lyu, Y., Zhang, K., Chai, F.-H., Cheng, T.-T., Yang, Q., Zheng, Z. L., & Li, X. (2017). Atmospheric size-resolved trace elements in a city affected by nonferrous metal smelting: Indications of respiratory deposition and health risk. Environmental Pollution, 224, 559–571.

    Article  CAS  Google Scholar 

  • Ministry of Envrionmental Protection (MEP). (2012). Ambient Air Quality Standards (GB3095-2012) (pp. 1–12). Beijing: China Environmental Science Press.

    Google Scholar 

  • Mishra, D., Goyal, P., & Upadhyay, A. (2015). Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi India. Atmospheric Environment, 102, 239–248.

    Article  CAS  Google Scholar 

  • Mukhtar, A., & Limbeck, A. (2013). Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Analytica Chimica Acta, 774, 11–25.

    Article  CAS  Google Scholar 

  • Niu, L., Ye, H., Xu, C., Yao, Y., & Liu, W. (2015). Highly time- and size-resolved fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China. Chemosphere, 119, 112–121.

    Article  CAS  Google Scholar 

  • O’Shaughnessy, P. T., & Raabe, O. G. (2003). A comparison of cascade impactor data reduction methods. Aerosol Science and Technology, 37, 187–200.

    Article  CAS  Google Scholar 

  • Pan, Y., Wang, Y., Sun, Y., Tian, S., & Cheng, M. (2013). Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport. Science of the Total Environment, 461, 761–771.

    Article  CAS  Google Scholar 

  • Saffari, A., Daher, N., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2014). Global Perspective on the Oxidative Potential of Airborne Particulate Matter: A Synthesis of Research Findings. Environmental Science & Technology, 48, 7576–7583.

    Article  CAS  Google Scholar 

  • Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96, 2059–2077.

    Article  Google Scholar 

  • Sun, Y. L., Zhuang, G. S., Tang, A. H., Wang, Y., & An, Z. S. (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environmental Science & Technology, 40, 3148–3155.

    Article  CAS  Google Scholar 

  • Tan, J. H., Duan, J. C., Ma, Y. L., Yang, F. M., Cheng, Y., He, K. B., et al. (2014). Source of atmospheric heavy metals in winter in Foshan, China. Science of the Total Environment, 493, 262–270.

    Article  CAS  Google Scholar 

  • Tan, J. H., Duan, J. C., Zhen, N. J., He, K. B., & Hao, J. M. (2016). Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. Atmospheric Research, 167, 24–33.

    Article  CAS  Google Scholar 

  • Taner, S., Pekey, B., & Pekey, H. (2013). Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Science of the Total Environment, 454, 79–87.

    Article  CAS  Google Scholar 

  • Tao, M., Chen, L., Xiong, X., Zhang, M., Ma, P., Tao, J., & Wang, Z. (2014). Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmospheric Environment, 98, 417–425.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental-crust. Reviews of Geophysics, 33, 241–265.

    Article  Google Scholar 

  • Tian, H. Z., Liu, K. Y., Zhou, J. R., Lu, L., Hao, J. M., Qiu, P. P., et al. (2014). Atmospheric Emission Inventory of Hazardous Trace Elements from China’s Coal-Fired Power Plants-Temporal Trends and Spatial Variation Characteristics. Environmental Science & Technology, 48, 3575–3582.

    Article  CAS  Google Scholar 

  • United States Environment Protection Agency (USEPA). (2009). Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Available on-line at: ttp://www.epa.gov/oswer/riskassessment/ragsf/index.htm.

  • United States Environment Protection Agency (USEPA). (2015).User's Guide/technical Background Document for US EPA Region 9's RSL (Regional Screening Levels) Tables. Available on-line at: https://www.epa.gov/region9/superfund/prg/.

  • Wang, H. L., An, J. L., Shen, L. J., Zhu, B., Pan, C., Liu, Z. R., et al. (2014). Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta China. Science of the Total Environment, 490, 501–508.

    Article  CAS  Google Scholar 

  • Wang, J., Pan, Y., Tian, S., Chen, X., Wang, L., & Wang, Y. (2016). Size distributions and health risks of particulate trace elements in rural areas in northeastern China. Atmospheric Research, 168, 191–204.

    Article  CAS  Google Scholar 

  • Wang, S.-B., Yan, Q.-S., Zhang, R.-Q., Jiang, N., Yin, S.-S., & Ye, H.-Q. (2019). Size-fractionated particulate elements in an inland city of China: Deposition flux in human respiratory, health risks, source apportionment, and dry deposition. Environmental Pollution, 247, 515–523.

    Article  CAS  Google Scholar 

  • Wang, W., Yu, J., Cui, Y., He, J., Xue, P., Cao, W., et al. (2018). Characteristics of fine particulate matter and its sources in an industrialized coastal city Ningbo, Yangtze River Delta, China. Atmospheric Research, 203, 105–117.

    Article  CAS  Google Scholar 

  • Wang, X., He, S., Chen, S., Zhang, Y., Wang, A., Luo, J., et al. (2018). Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 in Zhejiang Province. International Journal of Environmental Research and Public Health, 15, 583–600.

    Article  CAS  Google Scholar 

  • Wang, Y. Q., Zhang, X. Y., & Draxler, R. R. (2009). TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environmental Modelling & Software, 24, 938–939.

    Article  Google Scholar 

  • World Health Organization (WHO). (2000). Air quality guidelines for Europe, second edition (WHO regional publications. European series ; No. 91), 288.

  • Wu, Y., Lu, B. B., Zhu, X. L., Wang, A. H., Yang, M., Gu, S. H., et al. (2019). Seasonal Variations, Source Apportionment, and Health Risk Assessment of Heavy Metals in PM2.5 in Ningbo, China. Aerosol and Air Quality Research, 19, 2083–2092.

    Article  CAS  Google Scholar 

  • Xu, J. S., Xu, H. H., Xiao, H., Tong, L., Snape, C. E., Wang, C. J., & He, J. (2016). Aerosol composition and sources during high and low pollution periods in Ningbo, China. Atmospheric Research, 178–179, 559–569.

    Article  CAS  Google Scholar 

  • Xu, J. S., Tai, X., Betha, R., He, J., & Balasubramanian, R. (2015). Comparison of physical and chemical properties of ambient aerosols during the 2009 haze and non-haze periods in Southeast Asia. Environmental Geochemistry and Health, 37, 831–841.

    Article  CAS  Google Scholar 

  • Yan, P., Zhang, R., Huan, N., Zhou, X., Zhang, Y., Zhou, H., & Zhang, L. (2012). Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China. Atmospheric Environment, 60, 121–131.

    Article  CAS  Google Scholar 

  • Yang, Y., Wang, Y., Huang, W., Hu, B., Wen, T., & Zhao, Y. N. (2010). Size Distributions and Elemental Compositions of Particulate Matter on Clear Hazy and Foggy days in Beijing, China. Advances in Atmospheric Sciences, 27, 663–675.

    Article  CAS  Google Scholar 

  • Youn, J. S., Csavina, J., Rine, K. P., Shingler, T., Taylor, M. P., Sáez, A. E., et al. (2016). Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations. Environmental Science & Technology, 50, 11706–11713.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhou, X., Wang, Z., Yang, L., Wang, J., & Wang, W. (2018). Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment. The Science of the Total Environment, 621, 558–577.

    Article  CAS  Google Scholar 

  • Zoller, W. H., Gladney, E. S., & Duce, R. A. (1974). Atmospheric concentrations and sources of trace-metals at south pole. Science, 183, 198–200.

    Article  CAS  Google Scholar 

  • Zwozdziak, A., Gini, M. I., Samek, L., Rogula-Kozlowska, W., Sowka, I., & Eleftheriadis, K. (2017). Implications of the aerosol size distribution modal structure of trace and major elements on human exposure, inhaled dose and relevance to the PM2.5 and PM10 metrics in a European pollution hotspot urban area. Journal of Aerosol Science, 103, 38–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was conducted at the International Doctoral Innovation Centre (IDIC), University of Nottingham Ningbo China. The authors of the present study acknowledge the financial support from IDIC, Ningbo Education Bureau, Ningbo Science and Technology Bureau, and the University of Nottingham. This research was also partially supported by the Ningbo Municipal Innovation Team Project (2017C510001) and UK Engineering and Physical Sciences Research Council (EP/G037345/1 and EP/L016362/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L., He, J. & Yang, X. Characteristics, emission sources and health risk assessment of trace elements in size-segregated aerosols during haze and non-haze periods at Ningbo, China. Environ Geochem Health 43, 2945–2963 (2021). https://doi.org/10.1007/s10653-020-00757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00757-2

Keywords

Navigation