Skip to main content

Advertisement

Log in

Concentration and chemical distribution of metals and arsenic under different typical Mediterranean cropping systems

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil under an intensive agriculture production could result in metal pollution if bad management practices are carried out. The aims of this study were to evaluate the influence of cropping systems on soil metal(loid)s accumulation and speciation and to identify metal sources for each cropping system. To achieve these objectives, 40 soil samples from cereal, fruit, citrus and horticultural cropping areas and 15 samples from non-disturbed areas were collected. pH, salinity, particle size distribution, organic carbon and carbonate contents were analysed. In addition, total, DTPA-extractable and water-soluble Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and As concentrations and their chemical speciation were determined. Results showed an enrichment of Pb in cereal and horticultural soils, of Zn in fruit and horticultural soils and of Cu and Cd in citrus soils. The most available metals were Pb and Cd which was due to their ability to bind to carbonate and reducible phases of soils. The PCA suggested an anthropogenic origin of Pb, Cd, Cu and Zn in most of the cropping systems; this origin was related to both agriculture management practices and other anthropic actions, such as traffic. Therefore, changes in crop managements are necessary for a sustainable agriculture in the studied crop systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta, J. A., Faz, A., & Martinez-Martinez, S. (2010). Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environmental Monitoring Assessment,169, 519–530.

    CAS  Google Scholar 

  • Acosta, J. A., Faz, A., Martínez-Martínez, S., & Arocena, J. M. (2011a). Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia city, southeast Spain). Applied Geochemistry,26, 405–414.

    CAS  Google Scholar 

  • Acosta, J. A., Faz, A., Martínez-Martínez, S., Zornoza, R., Carmona, D. M., & Kabas, S. (2011b). Multivariate statistical and GIS-based approach to evaluate heavy metals behaviour in mine sites for future reclamation. Journal of Geochemical Exploration,109, 8–17.

    CAS  Google Scholar 

  • Acosta, J. A., Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R., & Arocena, J. M. (2015). Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere,134, 328–337.

    CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments, biogeochemistry, bioavailability and risk of metals (2nd ed.). New York: Springer.

    Google Scholar 

  • AEMET. (2016). http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=7228&k=mur. Accesed November 2016.

  • Alias, L. J., & Ortiz, R. (1975). Características fisiográficas y ambientales de interés edafogenético del campo de Cartagena (Murcia). Anal. Inst. Bot. Cavanilles,32(2), 1021–1037.

    Google Scholar 

  • Andrades, M. (1996). Prácticas de Edafología y Climatología. In Universidad de la Rioja (Ed.). Logroño, La Rioja, España (pp. 14–16).

  • Botsou, F., Sungur, A., Kelepertzis, E., & Soylak, M. (2016). Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica’s region, Greece. Ecotoxicology and Environmental Safety,132, 101–110.

    CAS  Google Scholar 

  • Buurman, P., van Lagen, B., & Veltorst, E. J. (1996). Manual for soil and water analysis. Leiden: Backhuys Publishers, Technical Report.

    Google Scholar 

  • Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., et al. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration,148, 189–195.

    CAS  Google Scholar 

  • Cavani, L., Manici, L. M., Caputo, F., Peruzzi, E., & Ciavatta, C. (2016). Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. Journal of Environmental Management,182, 37–47.

    CAS  Google Scholar 

  • Chen, T., Liu, X., Li, X., Zhao, K., Zhang, J., Xu, J., et al. (2009). Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China. Environment Pollution,157, 1003–1010.

    CAS  Google Scholar 

  • Deng, W., Li, X., An, Z., Yang, L., Hou, K., & Zhang, Y. (2016). Identification of sources of metal in the agricultural soils of the Guanzhong plain, northwest China. Environmental Toxicology and Chemistry,9999(9999), 1–7.

    Google Scholar 

  • Ding, Q., Cheng, G., Wang, Y., & Zhuang, D. (2017). Effects of undisturbed factors on the spatial distribution of heavy metals in soils surrounding mining regions. Science of the Total Environment,578, 577–585.

    CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metals sources in soils. Environmental Pollution,114, 313–324.

    CAS  Google Scholar 

  • FIMRT. (2010). Certificate reference material catalogue. Germany: Federal Institute for Material Research and Testing.

    Google Scholar 

  • Frau, F. (2000). The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: Environmental implications. Mineralogical Magazine,64(6), 995–1006.

    CAS  Google Scholar 

  • Gasparatos, D., Mavromati, G., Kotsovilis, P., & Massas, I. (2015). Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: A residential, agricultural, and industrial area in Greece. Environmental Earth and Sciences,74, 1099–1108.

    CAS  Google Scholar 

  • Guo, T., De Laune, R. D., & Patrick, W. H., Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International,23(3), 305–316.

    CAS  Google Scholar 

  • Hjortenkrans, D. S. T., Bergback, B. G., & Haggerud, A. V. (2008). Transversal immission patterns and leachability of heavy metals in road side soils. Journal of Environmental Monitoring,10, 739–746.

    CAS  Google Scholar 

  • Hooda, P. S. (2010). Trace elements in soils. Hoboken: Blackwell Publishing Ltd.

    Google Scholar 

  • Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., Yan, C. Y., et al. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere,67, 2148–2155.

    CAS  Google Scholar 

  • IGME. (2016). http://info.igme.es/visorweb/. Accesed December 2016.

  • IGME. (2018a). Memoria Hoja Geológica Caravaca de la Cruz. http://info.igme.es/cartografiadigital/geologica/mgd50Hoja.aspx?Id=910&language=es.

  • IGME. (2018b). Memoria Hoja Geológica Cieza. http://info.igme.es/cartografiadigital/datos/mgd50/memorias/Memoria891.pdf.

  • Kabata-pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma,221–222, 82–90.

    Google Scholar 

  • Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., et al. (2013). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology,58, 449–458.

    CAS  Google Scholar 

  • Kosolsaksakul, P., Farmer, J. G., Oliver, I. W., & Graham, M. C. (2014). Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environmental Pollution,187, 153–161.

    CAS  Google Scholar 

  • Kwon, S.-I., Jang, Y.-A., Owens, G., Kim, M.-K., Jung, G.-B., Hong, S.-C., et al. (2014). Long-term assessment of the environmental fate of heavy metals in agricultural soil after cessation of organic waste treatments. Environmental Geochemistry and Health,36, 409–419.

    CAS  Google Scholar 

  • Li, X. D., Coles, B. J., Ramsey, M. H., & Thornton, I. (1995). Sequential extraction of soils for multielement analysis by ICP-AES. Chemical Geology,124, 109–123.

    CAS  Google Scholar 

  • Li, Y., Wang, Y.-B., Gou, X., Su, Y.-B., & Wang, G. (2006). Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. Journal of Environmental Sciences,18(6), 1124–1134.

    CAS  Google Scholar 

  • Lin, Y., Hana, P., Huang, Y., Yuan, G.-L., Guo, J.-X., & Li, J. (2017). Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis. Journal of Geochemical Exploration,173, 110–118.

    CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for Zn, Fe, Mn, and Cu. Soil Science Society of America Journal,42, 421–428.

    CAS  Google Scholar 

  • Liu, Y., Wang, H., Li, X., & Li, J. (2015). Heavy metal contamination of agricultural soils in Taiyuan, China. Pedosphere,25(6), 901–909.

    Google Scholar 

  • Lu, A., Wang, J., Qin, X., Wang, K., Han, P., & Zhang, S. (2012). Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment,425, 66–74.

    CAS  Google Scholar 

  • Lukat, E., & Sarteel, M. (2013). Resource efficiency in practiceClosing mineral cycles (Eficiencia de los recursos en la práctica. El cierre de los ciclos de minerales). Elizabeth Dooley Ed., European commission project No. 070372/2013/665122/ETU/B.1. http://ec.europa.eu/environment/water/water-itrates/pdf/leaflets/Leaflet_Murcia_ES.pdf.

  • Luo, X.-S., Yu, S., & Li, X.-D. (2011). Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution,159, 1317–1326.

    CAS  Google Scholar 

  • Martínez-Sánchez, M. J., & Pérez-Sirvent, C. (2007). Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. Secretaría autonómica para la sostenibilidad. Dirección General de calidad ambiental Ed. Spain.

  • Micó, C., Peris, M., Sánchez, J., & Recatalá, L. (2006a). Heavy metal content of agricultural soils in a Mediterranean semiarid area: The Segura River Valley (Alicante, Spain). Spanish Journal of Agricultural Research,4(4), 363–372.

    Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006b). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere,65, 863–872.

    Google Scholar 

  • Nicholson, F. A., Smithb, S. R., Allowayc, B. J., Carlton-Smithd, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment,311, 205–219.

    CAS  Google Scholar 

  • Patil, H., Tank, R. V., Bennurmath, P., & Doni, S. (2018). Role of zinc, copper and boron in fruit crops: A review. International Journal of Chemical Studies,6, 1040–1045.

    CAS  Google Scholar 

  • Peris, M., Micó, C., Recatalá, L., Sánchez, R., & Sánchez, J. (2007). Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Science of the Total Environment,378, 42–48.

    CAS  Google Scholar 

  • Peris, M., Recatalá, L., Micó, C., Sánchez, R., & Sánchez, J. (2008). Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean Region. Water, Air, and Soil pollution,192, 25–37.

    CAS  Google Scholar 

  • Risser, J. A., & Baker, D. E. (1990). Testing soils for toxic metals. In R. L. Westerman (Ed.), Soil testing and plant analysis (pp 275–298). Soil Science Society of America. Special Publication, 3rd Ed., Madison.

  • Rodríguez, J. A., Nanos, N., Grau, J. M., Gil, L., & López-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere,70, 1085–1096.

    Google Scholar 

  • Rodríguez Martin, J. A., López-Arias, M., & Grau, J. M. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environmental Pollution,144, 1001–1012.

    Google Scholar 

  • Rodríguez-Martín, J. A., Ramos-Miras, J. J., Boluda, R., & Gil, C. (2013). Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma, 200–201, 180–188.

    Google Scholar 

  • Santiago-Martín, A., Valverde-Asenjo, I., Quintana, J. R., Vázquez, A., Lafuente, A. L., & González-Huecas, C. (2014). Carbonate, organic and clay fractions determine metal bioavailability in periurban calcareous agricultural soils in the Mediterranean area. Geoderma,221–222, 103–112.

    Google Scholar 

  • Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S., & Vithanage, M. (2017). Heavy metal-induced oxidative stress on seed germination and seedling development: A critical review. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0005-8.

    Article  Google Scholar 

  • Signes-Pastor, A. J., Carey, M., Carbonell-Barrachina, A. A., Moreno-Jiménez, E., Green, A. J., & Meharg, A. A. (2016). Geographical variation in inorganic arsenic in paddy field samples and commercial rice 500 from the Iberian Peninsula. Food Chemistry,202, 356–363.

    CAS  Google Scholar 

  • Sofianska, E., & Michailidis, K. (2015). Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece. Environmental Monitoring Assessment,187, 101.

    CAS  Google Scholar 

  • Soil Survey Staff. (2004). Soil survey laboratory methods manual. Version No. 4.0.USDA NRCS. Soil Survey Investigations Report No. 42. U.S. Govt. Print. Office, Washington, DC.

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere,92, 517–523.

    CAS  Google Scholar 

  • Sutherland, R. A., & Tolosa, C. A. (2000). Multi-element analysis ofroad-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution,110, 483–495.

    CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry,51, 844–851.

    CAS  Google Scholar 

  • Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International,88, 299–309.

    Google Scholar 

  • Tsipouridis, C. G., Simonis, A. D., Bladenopoulos, S., Isaakidis, A. M., & Stylianidi, D. C. (2002). Nutrient element variability of peach trees and tree mortality in relation to cultivars and rootstocks. Horticultural Science (Prague),29(2), 51–55.

    Google Scholar 

  • USDA. (1987). Textural soil classification. Soil Conservation Service: Study guide. National employee development staff.

    Google Scholar 

  • Zhang, J., Wang, Y., Liu, J., Liu, Q., & Zhou, Q. (2016). Multivariate and geostatistical analyses of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China. Journal of Soils and Sediments,16, 634–644.

    Google Scholar 

  • Zong, Y. T., Xiao, Q., & Lu, S. G. (2016). Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China. Environmental Science and Pollution Research,23, 24107–24114.

    Google Scholar 

Download references

Acknowledgements

The financial support to conduct this study was provided by the Fundación Séneca of Comunidad Autónoma de Murcia-Spain (15380/PI/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Gabarrón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabarrón, M., Faz, A., Martínez-Martínez, S. et al. Concentration and chemical distribution of metals and arsenic under different typical Mediterranean cropping systems. Environ Geochem Health 41, 2845–2857 (2019). https://doi.org/10.1007/s10653-019-00349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00349-9

Keywords

Navigation