Skip to main content

Advertisement

Log in

Harnessing fertilizer potential of human urine in a mesocosm system: a novel test case for linking the loop between sanitation and aquaculture

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Human urine (HU) is a biogenic fertilizer which has raised immense interest owing to its capacity of combining sanitation and nutrient recovery. In search of an alternative organic fertilizer for fish culture, the nutrient potential of HU was evaluated. Fries of Indian carps and larvae of freshwater prawn were reared for 120 days under six conditions: (a) aerated and (b) non-aerated fresh HU (0.01%), (c) cattle manure (CM; 1.8 kg tank−1), mixed treatment with CM and HU under (d) iso-phosphorus and (e) iso-nitrogenous condition and (f) control. Monitoring of water quality and biological parameters revealed that total fish yield was the highest in CM (621.5 g tank−1) followed by mixed treatments under iso-nitrogenous (428 g tank−1) and iso-phosphorus (333 g tank−1) conditions, aerated HU (321 g tank−1) and HU (319 g tank−1). The gross primary productivity (GPP) in HU was satisfactory (601.8 mg C m−2 h−1) and superior to all but CM treatment. The abundance of heterotrophic bacteria (HB) was highest in CM and lowest in HU. Both GPP and HB population were correlated positively with fish yield per tank. Although pH in all treatments remained high (pH 8.4–8.9), no ammonia toxicity was observed. No E. coli infestation in any fish muscle was encountered. The concentrations of cadmium and lead in fish muscle were within respective safe level. The study established that high fertilizer potential of HU could be exploited as an alternative organic fertilizer or as a candidate to be blended with cattle manure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, H. H. (2006). Acute toxicity of ammonia to common carp fingerlings (Cyprinus carpio) at different pH levels. Pakistan Journal of Biological Sciences, 9(12), 2215–2221.

    Article  Google Scholar 

  • Adamsson, M. (2000). Potential use of human urine by greenhouse culturing of microalgae (Scenedesmus acuminatus), zooplankton (Daphnia magna) and tomatoes (Lycopersicon). Ecological Engineering, 16, 243–254.

    Article  Google Scholar 

  • AdeOluwa, O. O., & Cofie, O. (2012). Urine as an alternative fertilizer in agriculture: Effects in amaranths (Amaranthus caudatus) production. Renewable Agriculture and Food Systems, 27(4), 287–294.

    Article  Google Scholar 

  • APHA (American Public Health Association), American Water Works Association, Water Pollution Control Federation. (2012). Standard methods for the examination of water and wastewater (22nd ed.). New York: American Public Health Association.

    Google Scholar 

  • Bhandari, R. K., Deem, S. L., Holliday, D. K., Jandegian, C. M., Kassotis, C. D., Nagel, S. C., et al. (2015). Effects of the environmental estrogenic contaminants bisphenol A and 17a-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. General and Comparative Endocrinology, 214, 195–219.

    Article  CAS  Google Scholar 

  • Biswas, J. K., Sarkar, D., Chakraborty, P., Bhakta, J. N., & Jana, B. B. (2006). Density dependent ambient ammonium as the key factor for optimization of stocking density of common carp in small holding tanks. Aquaculture, 261, 952–959.

    Article  CAS  Google Scholar 

  • Boyd, C. E. (1998). Pond water aeration systems. Aquacultural Engineering, 18, 9–40.

    Article  Google Scholar 

  • Bulgakov, N. G., & Levich, A. P. (1999). The nitrogen:phosphorus ratio as a factor regulating phytoplankton community structure. Archiv fur Hydrobiologie, 146, 3–22.

    Article  CAS  Google Scholar 

  • Chakrabarti, R., & Jana, B. B. (1998). Effects on growth and water quality of feeding exogenous plankton compared to use of manure in the culture of mrigal, Cirrhinus mrigala, rohu, Labeo rohita fry in tanks. Journal of Applied Aquaculture, 8, 88–95.

    Article  Google Scholar 

  • Chavoso, N., & Diego-McGlone, M.-L. (2003). Water quality and holding capacity of intensive and semi-intensive milkfish (Chanos chanos) ponds. Aquaculture, 219(1–4), 413–429.

    Article  Google Scholar 

  • Christiansen, L. B., Winther-Nielsen, M., & Helweg, C. (2002). Feminization of fish—The effect of estrogenic compounds and their fate in sewage treatment plants and nature. Environmental project no. 729, Danish Environmental Protection Agency, ISBN: 87-7972-306-3.

  • Drangert, J. O. (1998). Urine blindness and the use of nutrients from human excreta in urban agriculture. Geochemical Journal, 45, 201–208.

    Google Scholar 

  • Edwards, P. (2004). Traditional Chinese aquaculture and its impact outside China. World Aquaculture, 35(1), 24–27.

    Google Scholar 

  • Ek, M., Bergstrom, R., Bjurhem, J.-E., Bjorlenius, B., & Hellstrom, D. (2006). Concentration of nutrients from urine and reject water from anaerobically digested sludge. Water Science and Technology, 54(11–12), 437–444.

    Article  CAS  Google Scholar 

  • Evjem, J. O., Reitan, K. I., & Olsen, Y. (2003). Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 227(1–4), 191–210.

    Article  Google Scholar 

  • Fatunbi, A. O. (2009). Suitability of human urine enriched compost as horticultural growing medium. World Applied Sciences Journal, 6(5), 637–643.

    Google Scholar 

  • Feng, D., Wu, Z., & Xu, S. (2008). Nitrification of human urine for its stabilization and nutrient recycling. Bioresource Technology, 99, 6299–6304.

    Article  CAS  Google Scholar 

  • Fernandes, S. O., Kulkarni, S. S., Shirodkar, R. R., Karekar, S. V., Kumar, R. P., Sreepada, R. A., et al. (2010). Water quality and bacteriology in an aquaculture facility equipped with a new aeration system. Environmental Monitoring and Assessment, 164(4), 81–92.

    Article  CAS  Google Scholar 

  • Gangadhar, B., Sridhar, N., Hemaprasanth, K., Raghunath, M., & Jayasankar, P. (2016). Indigenous technical knowledge in aquaculture sector: A literature review. International Journal of Fisheries and Aquatic Studies, 4(1), 373–378.

    Google Scholar 

  • Gilbert, P. M., & Terlizzi, D. E. (1999). Cooccurrence of elevated urea levels and Dinoflagellate blooms in temperate estuarine aquaculture ponds. Applied Environmental Microbiology, 65, 5594–5596.

    Google Scholar 

  • Gobler, C. J., Lonsdale, D. J., & Boyer, G. L. (2005). A synthesis and review of causes and impact of harmful brown tide blooms caused by the alga, Aureococcus anophagefferens. Estuaries, 28, 726–749.

    Article  Google Scholar 

  • Golder, D., Rana, S., Sarkar (Paria), D., & Jana, B. B. (2007). Human urine is an excellent liquid waste for the culture of fish food organism Moina micrura. Ecological Engineering, 30, 326–332.

    Article  Google Scholar 

  • Guzha, E., Nhapi, I., & Rockstrom, J. (2005). An assessment of the effect of human faeces and urine on maize production and water productivity. Physics and Chemistry of the Earth, 30(11–16), 840–845.

    Article  Google Scholar 

  • Heinonen-Tanski, H., & Wijk-Sijbesma, C. V. (2005). Review: Human excreta for plant production. Bioresource Technology, 96, 403–411.

    Article  CAS  Google Scholar 

  • Hellstrom, D., Johansson, E., & Grennberg, K. (1999). Swedish experiences with urine separating system. Wasser and Boden, 51, 26–29.

    CAS  Google Scholar 

  • Hoglund, C., Stenstrom, T. A., & Asbolt, N. (2002). Microbial risk assessment of source separated urine used in agriculture. Waste Management and Research, 20, 150–161.

    Article  CAS  Google Scholar 

  • Jensen, P. K. M., Phuc, P. D., Knudsen, L. G., Dalsgaard, A., & Konradsen, F. (2008). Hygiene versus fertiliser: The use of human excreta in agriculture—A Vietnamese example. International Journal of Hygiene and Environmental Health, 211, 432–439.

    Article  Google Scholar 

  • Jhingran, V. G. (1995). Fish and fisheries of India. New Delhi: Hindustan Publishing.

    Google Scholar 

  • Jonsson, H., Stinzing, A. R., Vinneras, B., & Salomon, E. (2004). Guidelines on the use of urine and faeces in crop production. EcoSanRes publication series report 2004–2, Stockholm Environment Institute, Sweden.

  • Jonsson, H., Baky, A., Jeppsoon, U., Hellstrom, D., & Karman, E. (2005). Composition of urine, faeces, graywater, and biowaste for utilization in the URWARE model. Urban water report of the MISTRA programme, report 6, Chalmers University of Technology, Gothenburg, Sweden.

  • Karak, T., & Bhattacharyya, P. (2011). Human urine as a source of alternative natural fertilizer in agriculture: A flight of fancy or an achievable reality. Resources, Conservation and Recycling, 55, 400–408.

    Article  Google Scholar 

  • Kemacheevakul, P., Chuangchote, S., Otani, S., Matsuda, T., & Shimizu, Y. (2014). Phosphorus recovery: Minimization of amount of pharmaceuticals and improvement of purity in struvite recovered from hydrolysed urine. Environmental Technology, 35, 3011–3019.

    Article  CAS  Google Scholar 

  • Khetan, S. K., & Collins, T. J. (2007). Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chemical Reviews, 107, 2319–2364.

    Article  CAS  Google Scholar 

  • Kirchmann, H., & Pettersson, S. (1995). Human urine – chemical composition and fertilizer use efficiency. Fertilizer Research, 40, 149–154.

    Article  Google Scholar 

  • Kogan, M. I., Naboka, Y. L., Ibishev, K. S., Gudima, I. A., & Naber, K. G. (2015). Human urine is not sterile—Shift of paradigm. Urologia Internationalis, 94(4), 445–452.

    Article  Google Scholar 

  • Kremp, A., Tamminen, T., & Spilling, K. (2008). Dinoflagellate bloom formation in natural assemblages with diatoms: Nutrient competition and growth strategies in Baltic spring phytoplankton. Aquatic Microbial Ecology, 50, 181–196.

    Article  Google Scholar 

  • Kumar, J. S., & Shende, D. (2006). Combustion of cow dung in fluidized state for household purposes. Advances in Energy Research, 113–116. http://www.greenresourcesredux.com/clientimages/44570/027.pdf

  • Kumar, D., Chaturvedi, M. K. M., Sharma, S. K., & Asolekar, S. R. (2015). Sewage-fed aquaculture: A sustainable approach for wastewater treatment and reuse. Environmental Monitoring and Assessment, 187(10), 656. doi:10.1007/s10661-015-4883-x.

    Article  Google Scholar 

  • Lim, C. L., Dhert, P., & Soregloos, P. (2003). Recent developments in the application of live feeds in the freshwater ornamental fish culture. Aquaculture, 227, 319–331.

    Article  Google Scholar 

  • Mang, H., Jurga, I. P., & Xu, Z. (2007). Experience in improving fertilizer value of compost by enriching with urine. International Journal of Environmental Technology and Management, 7, 464–471.

    Article  Google Scholar 

  • Marinho, M. M., & Huszar, V. L. M. (2002). Nutrient availability and physical conditions as controlling factors of phytoplankton composition and biomass in a tropical reservoir (Southeastern Brazil). Archiv fur Hydrobiologie, 153, 443–468.

    Article  Google Scholar 

  • Martin, L., Arenal, A., Fajardo, J., Pimental, E., Hidalgo, L., Pacheco, M., et al. (2003). Complete and partial replacement of artemia nauplii by Moina micura during early post larval culture of white shrimp Litopenaeus schmitti. Aquaculture Nutrition, 12(2), 89–96.

    Article  Google Scholar 

  • Masic, A., Santos, A. T. L., Etter, B., Udert, K. M., & Villez, K. (2015). Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry. Water Research, 85, 244–254.

    Article  CAS  Google Scholar 

  • Mc Bride, M. B., & Spiers, G. (2001). Trace element control of selected fertilizers and dairy manures as determined by ICO-MS. Communications in Soil Science and Plant Analysis, 32, 139–156.

    Article  CAS  Google Scholar 

  • Mennaa, F. Z., Arbib, Z., & Perales, J. A. (2015). Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvestability. Water Research, 83, 42–51.

    Article  CAS  Google Scholar 

  • Niwagaba, C., Nalubega, M., Vinneras, B., Sundberg, C., & Jonsson, N. (2009). Substrate composition and moisture in composting source-separated human faeces and food waste. Environmental Technology, 30, 487–497.

    Article  CAS  Google Scholar 

  • Pradhan, S. K., Nerg, A., Sjoblom, A., Holopainen, J. K., & Heinonen-Tanski, H. (2007). Use of human urine fertilizer in cultivation of cabbage (Brassica oleracea)-impacts on chemical, microbial, and flavor quality. Journal of Agricultural and Food Chemistry, 55, 8657–8663.

    Article  CAS  Google Scholar 

  • Pradhan, S. K., Holopainen, J. K., & Heinonen-Tanski, H. (2009). Stored human urine supplemented with wood ash as fertilizer in tomato (Solanum lycopersicum) cultivation and its impacts on fruit yield and quality. Journal of Agricultural and Food Chemistry, 57, 7612–7617.

    Article  CAS  Google Scholar 

  • Schouw, N. L., Danteravanich, S., Mosbaek, H., & Tjell, J. C. (2002). Composition of human excreta—A case study from Southern Thailand. Science of the Total Environment, 286, 155–166.

    Article  CAS  Google Scholar 

  • Sellner, K. G., Doucette, G. J., & Kirkpatrick, G. J. (2003). Harmful algal blooms: Causes, impacts and detection. Journal of Industrial Microbiology and Biotechnology, 3, 383–406.

    Article  Google Scholar 

  • Tuantet, K., Temmink, H., Zeeman, G., Janssen, M., Wijffels, R. H., & Buisman, C. J. N. (2014). Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Research, 55, 162–174.

    Article  CAS  Google Scholar 

  • Turner, C., Williams, S. M., Burton, C. H., Cumby, T. R., Wilkinson, P. J., & Farrent, J. W. (1999). Pilot scale thermal treatment of pig slurry for the inactivation of animal virus pathogens. Journal of Environmental Science and Health, Part B, 34, 989–1007.

    Article  CAS  Google Scholar 

  • Udert, K. M., Larsen, T. A., & Gujer, W. (2006). Fate of major compounds in source separated urine. Water Science and Technology, 54, 413–420.

    Article  CAS  Google Scholar 

  • Vadstein, O., Stibor, H., Lippert, B., Loseth, K., Roederer, W., Sundt-Hansen, L., et al. (2004). Moderate increases in the biomass of omnivorous copepods may ease grazing control of planktonic algae. Marine Ecology Progress Series, 270, 199–207.

    Article  Google Scholar 

  • Vinneras, B. (2002). Possibilities for sustainable nutrient recycling by faecal separation combined with urine diversion. Ph.d. thesis, Agraria 353, Swedish Universities of Agricultural Sciences, Uppsala.

  • Vinneras, B., Bjorklund, A., & Jonsson, H. (2003). Disinfection of faecal matter by thermal composting—Laboratory scale and pilot scale studies. Bioresource Technology, 88, 47–54.

    Article  CAS  Google Scholar 

  • Vinneras, B., Palmquist, H., Balmer, P., Weglin, H., Jense, A., Anderson, A., et al. (2006). Characteristics of household wastewater and biodegradable waste—A proposal for new Swedish norms. Urban Water, 3, 3–11.

    Article  Google Scholar 

  • Vollenweider, R. A. (1974). A manual on methods for measuring primary production in aquatic environments. Oxford: IBP Blackwell.

    Google Scholar 

  • Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. M. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioproducts and Biorefining, 4(3), 287–295.

    Article  CAS  Google Scholar 

  • Winker, M., Vinneras, B., Muskolus, A., Arnold, U., & Clemens, J. (2009). Fertilizer products from new sanitation systems: Their potential values and risks. Bioresource Technology, 100, 4090–4096.

    Article  CAS  Google Scholar 

  • Wootton, R. J. (1989). Ecology of teleost fishes. London: Chapman and Hall.

    Book  Google Scholar 

  • World Health Organization (WHO). (1992). Cadmium. Environmental health criteria (p. 134). Geneva: WHO.

    Google Scholar 

  • World Health Organization (WHO). (1995). Inorganic lead. Environmental health criteria (p. 165). Geneva: WHO.

    Google Scholar 

  • World Health Organization (WHO). (2006). Guidelines for the safe use of wastewater, excreta and grey water. Volume-4: Excreta and grey water use in agriculture. Geneva: WHO.

    Google Scholar 

  • Wurts, W. A. (2002). Alkalinity and hardness in production ponds. World Aquaculture, 33(1), 16–17.

    Google Scholar 

  • Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors duly acknowledge the financial assistance and all sorts of infrastructural support provided by University of Kalyani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Biswas, J.K., Rinklebe, J. et al. Harnessing fertilizer potential of human urine in a mesocosm system: a novel test case for linking the loop between sanitation and aquaculture. Environ Geochem Health 39, 1545–1561 (2017). https://doi.org/10.1007/s10653-017-9942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9942-5

Keywords

Navigation