Skip to main content

Advertisement

Log in

Alterations in antioxidant defense system of workers chronically exposed to arsenic, cadmium and mercury from coal flying ash

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Humans are exposed to different stress factors that are responsible for over-production of reactive oxygen species. Exposure to heavy metals is one of these factors. The aim of the study was to analyze the effect of chronic exposure to heavy metals through coal flying ash on the efficiency of antioxidative defensive mechanisms, represented by the activity of superoxide dismutase, glutathione peroxidase and ascorbic acid. Nonessential elements such as arsenic and mercury levels showed a significant increase (p > 0.001) in the power plant workers rather than in the control subjects. There were no significant differences of blood cadmium between power plant workers and control subjects. We found a significant positive correlation (p < 0.05) between BAs/SZn (r = 0.211), BAs/BSe (r = 0.287), BCd/SCu (r = 0.32) and BHg/BSe (r = 0.263) in the plant workers. Red blood cell antioxidant enzymes and plasma ascorbic acid were significantly lower in power plants workers than in the control group (p < 0.002). We can conclude that levels of mercury, arsenic and cadmium in blood, despite their concentration within the reference values, significantly affect plasma ascorbic acid concentration, superoxide dismutase and glutathione peroxidase activity, which are able to increase the risk of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

GPx:

Gluthatione peroxidase

SOD:

Superoxide dismutase

CAT:

Catalase

BMe:

Blood Me

SMe:

Serum Me

PP:

Power plant

C-index:

Covalent index

I-index:

Ionic index

References

  • Abdulla, M., & Chmielnicka, J. (1990). New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals. Biological Trace Element Research, 23, 25–53.

    Article  CAS  Google Scholar 

  • Alfven, T., Elinder, C. G., Hellstrom, L., Lagarde, F., & Järup, L. (2004). Cadmium exposure and distal forearm fractures. Journal of Bone and Mineral Research, 19, 900–905.

    Article  CAS  Google Scholar 

  • Alonso, M. L., Montaña, F. P., Miranda, M., Castillo, C., Hernández, J., & Benedito, J. L. (2004). Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. BioMetals, 17(4), 389–397.

    Article  CAS  Google Scholar 

  • Axelrad, D. A., Bellinger, D. C., Ryan, L. M., & Woodruff, T. J. (2007). Dose–response relationship of prenatal mercury exposure and IQ: An integrative analysis of epidemiologic data. Environmental Health Perspectives, 115, 609–615.

    Article  Google Scholar 

  • Bendich, A., Machlin, L. J., & Scandurra, O. (1986). The antioxidant role of vitamin C. Advance in Free Radical Biology and Medicine, 2, 419–444.

    Article  CAS  Google Scholar 

  • Borm, P. J., Meijers, J. M., & Swaen, G. M. (1990). Molecular epidemiology of coal worker’s pneumoconiosis: Application to risk assessment of oxidant and monokine generation by mineral dusts. Experimental Lung Research, 16, 57–71.

    Article  CAS  Google Scholar 

  • Braman, R. S., & Foreback, C. C. (1973). Methylated forms of arsenic in the environment. Science, 182, 1247–1249.

    Article  CAS  Google Scholar 

  • Cantin, A., & Crystal, R. G. (1985). Oxidants, antioxidants and the pathogenesis of emphysema. European Journal of Respiratory Diseases Supplement, 66, 7–17.

    Google Scholar 

  • Coronado-Gonzalez, J. A., Del Razo, L. M., Garcia-Vargas, G., Sanmiguel-Salazar, F., & la Pena, J. E. (2007). Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environmental Research, 104, 383–389.

    Article  CAS  Google Scholar 

  • Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., et al. (2010). Cadmium stress: an oxidative challenge. BioMetals, 23, 927–940.

    Article  CAS  Google Scholar 

  • Davidson, P. W., Myers, G. J., & Weiss, B. (2004). Mercury exposure and child development outcomes. Pediatrics, 113(4), 1023–1029.

    Google Scholar 

  • Dean, J. R. (2005). Practical inductively coupled plasma spectroscopy. Chichester: Wiley.

    Book  Google Scholar 

  • Ekino, S., Susa, M., Ninomiya, T., Imamura, K., & Kitamura, T. (2007). Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. Journal of the Neurological Sciences, 262, 131–144.

    Article  CAS  Google Scholar 

  • Engelen, J. J., Borm, P. J., van-Sprundel, M., & Leenaerts, L. (1990). Blood anti-oxidant parameters at different stages of pneumoconiosis in coal workers. Environmental Health Perspectives, 84, 165–172.

    Article  CAS  Google Scholar 

  • Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress. Part I. Mechanisms involved in metal induced oxidative damage. Current Topics in Medicinal Chemistry, 1, 529–539.

    Article  CAS  Google Scholar 

  • Evans, G. W., & LeBlanc, F. N. (1976). Copper-binding protein in rat intestine: amino acid composition and function. Nutrition Reports International, 14, 281–288.

    CAS  Google Scholar 

  • Francis, A. J., Duxbury, J. M., & Alexander, M. (1974). Evolution of dimethylselenide from soils. Applied Microbiology, 28, 248–250.

    CAS  Google Scholar 

  • Hill, C. H., & Matrone, G. (1970). Chemical parameters in the study of in vivo and in vitro interactions of transition elements. FASEB 29, 1474–1481.

    CAS  Google Scholar 

  • Hodgson, S., Nieuwenhuijsen, M. J., Elliott, P., & Jarup, L. (2007). Kidney disease mortality and environmental exposure to mercury. American Journal of Epidemiology, 165, 72–77.

    Article  Google Scholar 

  • Jakubowski, M. (1997). Exposure to chemical factors in the work environment. In M. Jakubowski (Ed.), Biological monitoring (pp. 165–177). Lodz: Nofer Institute of Occupational Medicine.

    Google Scholar 

  • Knochel, J. P., Shils, M., Olson, J. A., Shike, M., & Ross, A. C. (1999). Modern nutrition in health and disease (pp. 157–168). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Leonard, S. S., Harris, G. K., & Shi, X. (2004). Metal-induced oxidative stress and signal transduction. Free Radical Biology and Medicine, 37, 1921–1942.

    Article  CAS  Google Scholar 

  • Lykkesfeldt, J., Christen, S., Wallock, L. M., Chang, H. H., Jacob, R. A., & Ames, B. N. (2000). Ascorbate is depleted by smoking and repleted by moderate supplementation: A study in male smokers and nonsmokers with matched dietary antioxidant intakes. American Journal of Clinical Nutrition, 71, 530–536.

    CAS  Google Scholar 

  • Navarro Silvera, S. A., & Rohan, T. E. (2007). Trace elements and cancer risk: A review of the epidemiologic evidence. Cancer Causes and Control, 18, 7–27.

    Article  Google Scholar 

  • Navas-Acien, A., Silbergeld, E. K., Streeter, R. A., Clark, J. M., Burke, T. A., & Guallar, E. (2006). Arsenic exposure and type 2 diabetes: A systematic review of the experimental and epidemiological evidence. Environmental Health Perspectives, 114, 641–648.

    Article  CAS  Google Scholar 

  • Nieboer, E., & Richardson, D. H. S. (1980). The replacement of the nondescript term ‘Heavy metals’ by a biologically and chemically significant classification of metal ions. Environmental Pollution (Series B), 1, 3–26.

    Article  CAS  Google Scholar 

  • Palace, V. P., Mjewski, H. S., & Klaverkamp, J. F. (1992). Interactions among antioxidant defenses in liver of rainbow trout (Oncorhyncus mykiss) exposed to cadmium. Canadian Journal of Fish and Aquatic Science, 50, 156–162.

    Article  Google Scholar 

  • Parizek, J. (1978). Interaction of selenium compounds and those of mercury or cadmium. Environmental Health Perspectives, 22, 53–55.

    Article  Google Scholar 

  • Patra, R. C., Swarup, D., Naresh, R., Kumar, P., Nandi, D., Shekhar, P., et al. (2007). Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas. Ecotoxicology and Environmental Safety, 66(1), 127–131.

    Article  CAS  Google Scholar 

  • Patra, R. C., Swarup, D., Naresh, R., Puneet, K., & Shekhar, P. (2005). Cadmium level in blood and milk from animals reared around different polluting sources in India. Bulletin of Environment Contamination and Toxicology, 74(6), 1092–1097.

    Article  CAS  Google Scholar 

  • Phillips, C., Gyori, Z., & Kovacs, B. (2003). The effect of adding cadmium and lead alone or in combination to the diet of pigs on their growth, carcase composition and reproduction. Journal of Science, Food and Agriculture 83(13), 1357–1365.

    Article  CAS  Google Scholar 

  • Piasek, M., Blanusa, M., Kostial, K., & Laskey, J. W. (2001). Placental cadmium and progesterone concentrations in cigarette smokers. Reproductive Toxicology, 15(6), 673–681.

    Article  CAS  Google Scholar 

  • Pinto, E., Sigaud-Kutner, T. C. S., Leitao, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018.

    Article  CAS  Google Scholar 

  • Quig, D. (1998). Cysteine metabolism and metal toxicity. Alternative Medical Review, 3(4), 262–270.

    CAS  Google Scholar 

  • Richards, M. P., & Cousins, R. J. (1975). Mammalian zinc homeostasis: Requirements for RNA and metallothionein synthesis. Biochemical and Biophysical Research Communications 64, 1215–1223.

    Article  CAS  Google Scholar 

  • Roy, P., & Saha, A. (2002). Metabolism and toxicity of arsenic: A human carcinogen. Current Science, 82, 38–45.

    CAS  Google Scholar 

  • Rutkowski, M., & Grzegorczyk, K. (2007). Modifications of spectrophotometric methods for antioxidative vitamins determination convenient in analytic practice. Acta scientiarum Polonorum Technologia Alimentaria 6(3), 17–28.

    CAS  Google Scholar 

  • Satarug, S., Baker, J. R., Urbenjapol, S., Haswell-Elkins, M., Reilly, P. E., Williams, D. J., & Moore, M. R. (2003). A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 137, 65–83.

    Article  CAS  Google Scholar 

  • Scandalios, J. G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidantgene defences. Brazilian Journal of Medical and Biological Research, 38, 995–1014.

    Article  CAS  Google Scholar 

  • Silva, A. L. O., Barrocas, P. R. G., Jacob, S. C., & Moreira, J. C. (2005). Dietary intake and health effects of selected toxic elements. Brazilian Journal of Plant Physiology, 17, 79–93.

    Google Scholar 

  • Soldatović, D., Matović, V., Vujanović, D., & Stojanović, Z. (1998). Contribution to interaction between magnesium and toxic metals: The effect of prolonged cadmium intoxication on magnesium metabolism in rabbits. Magnesium Research, 11, 283–288.

    Google Scholar 

  • Suzuki, K. T., Sasakura, C., & Yoneda, S. (1998). Binding sites for the (Hg–Se) complex on selenoprotein P. Biochimica et Biophysica Acta, 1429(1), 102–112.

    Article  CAS  Google Scholar 

  • Thompson, W. W., Price, C., Goodson, B., Shay, D. K., Benson, P., Hinrichsen, V. L., et al. (2007). Early thimerosal exposure and neuropsychological outcomes at 7–10 years. New England Journal of Medicine, 357, 1281–1292.

    Article  CAS  Google Scholar 

  • Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.

    Article  CAS  Google Scholar 

  • Virtanen, J. K., Rissanen, T. H., Voutilainen, S., & Tuomainen, T. P. (2007). Mercury as a risk factor for cardiovascular diseases. Journal of Nutritional Biochemistry, 18, 75–85.

    Article  CAS  Google Scholar 

  • von Ehrenstein, O. S., Poddar, S., Yuan, Y., Mazumder, D. G., Eskenazi, B., Basu, A., et al. (2007). Children’s intellectual function in relation to arsenic exposure. Epidemiology, 18, 44–51.

    Article  Google Scholar 

  • Wang, C. H., Hsiao, C. K., Chen, C. L., Hsu, L. I., Chiou, H. Y., Chen, S. Y., et al. (2007). A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases. Toxicology and Applied Pharmacology, 222, 315–326.

    Article  CAS  Google Scholar 

  • Wasserman, G. A., Liu, X., Parvez, F., Factor-Litvak, P., Ahsan, H., Levy, D., et al. (2007). Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environmental Health Perspectives, 115, 285–289.

    Article  CAS  Google Scholar 

  • Whanger, P. D. (1992). Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis. Journal of Trace Elements and Electrolytes in Health and Disease, 6, 209–221.

    CAS  Google Scholar 

  • Yamanaka, K., Takabayashi, F., Mizoi, M., An, Y., Hasegawa, A., & Okada, S. (2001). Oral exposure of dimethylarsinic acid, a main metabolite of inorganic arsenics, in mice leads to an increase in 8-oxo-2′-deoxyguanosine level, specifically in the target organs for arsenic carcinogenesis. Biochemical and Biophysical Research Communications, 287, 66–70.

    Article  CAS  Google Scholar 

  • Yoneda, S., & Suzuki, K. T. (1997). Detoxification of mercury by selenium by binding of equimolar Hg–Se complex to a specific plasma protein. Toxicology and Applied Pharmacology, 143(2), 274–280.

    Article  CAS  Google Scholar 

  • Zeneli, L., Daci, N., Pacarizi, H., & Daci-Ajvazi, M. (2011). Impact of environmental pollution on human health of the population which lives nearby Kosovo thermopower plants. Indoor and Built Environment, 20, 479–482.

    Article  CAS  Google Scholar 

  • Zeneli, L., Daci-Ajvazi, M., Daci, N. M., Hoxha, D., & Shala, A. (2013). Environmental pollution and relationship between total antioxidant capacity and heavy metals (Pb, Cd, Zn, Mn, and Fe) in Solanum tuberosum L. and Allium cepa L. Human and Ecological Risk Assessment, 19, 1618–1627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulzim Zeneli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeneli, L., Sekovanić, A., Ajvazi, M. et al. Alterations in antioxidant defense system of workers chronically exposed to arsenic, cadmium and mercury from coal flying ash. Environ Geochem Health 38, 65–72 (2016). https://doi.org/10.1007/s10653-015-9683-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9683-2

Keywords

Navigation