Skip to main content

Advertisement

Log in

The mobility and human oral bioaccessibility of Zn and Pb in urban dusts of Estarreja (N Portugal)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Twenty-one samples of urban dust were collected from Estarreja city (Portugal). The main objective of this work was to assess the potential availability of Pb and Zn present dust samples from Estarreja city via the oral ingestion exposure route using a combination of geochemical tests: (a) using sequential extraction to identify the fractionation of the Pb and Zn within the geochemical components that make up the dust and (b) in vitro bioaccessibility (BA) measurements to identify which components are the source(s) of the bioaccessible fraction (Bf). These samples were analysed for their quasi-total contents of Pb and Zn by inductively coupled plasma mass spectrometry, for their element solid-phase distribution using selective sequential extraction method and for the Bfs of these elements using a physiologically based extraction test. The study showed that the concentrations of Zn were higher than Pb, but both are site-specific. The sequential extraction test shows that the exchangeable and acid-soluble phases are important bearing phases for Pb and Zn. The BA test showed that a high proportion of the total concentration is available for absorption into the human body (ranges from 22.5 to 84.1 % for Pb and 28.7 to 86.3 % for Zn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrahams, P. W. (2002). Soils: Their implications to human health. Science of the Total Environment, 291, 1–32.

    Article  CAS  Google Scholar 

  • Ahnstrom, Z. S., & Parker, D. R. (1999). Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. Soil Science Society of America Journal, 63, 1650–1658.

    Article  CAS  Google Scholar 

  • Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., et al. (2011). Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment, 45, 6777–6787. doi:10.1016/j.atmosenv.2011.06.003.

    Article  CAS  Google Scholar 

  • Appleton, J. D., Cave, M. R., & Wragg, J. (2012). Modelling lead bioaccessibility in urban topsoils based on data from Glasgow, London, Northampton and Swansea, UK. Environmental Pollution, 171, 265–272. doi:10.1016/j.envpol.2012.06.018.

    Article  CAS  Google Scholar 

  • Arunachalam, J., Emons, H., Krasnodebska, B., & Mohl, C. (1996). Sequential extraction studies on homogenized forest soil samples. Science of the Total Environment, 181(2), 147–159.

    Article  CAS  Google Scholar 

  • Baruah, N. K., Kotoky, P., Bhattacharyya, K. G., & Borah, G. C. (1996). Metal speciation in Jhanji river sediments. Science of the Total Environment, 193, 1–12.

    Article  CAS  Google Scholar 

  • Batista, A., Silva, E. F., Azevedo, M., Sousa, A., & Fonseca, E. C. (2002). Soil data analysis from central Portugal by principal component analysis and geostatistical techniques. Geochemistry: Exploration, Environment, Analysis, 2, 15–25.

    CAS  Google Scholar 

  • Beckett, P. H. T. (1989). The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils. In B. A. Stewart (Ed.), Advances in soil science (Vol. 9, pp. 144–176). Berlin: Springer.

    Chapter  Google Scholar 

  • Belzile, N., Lecomte, P., & Tessier, A. (1989). Testing readsorption of trace elements during partial chemical extractions of bottom sediments. Environ Science Technology, 23, 1015–1020. doi:10.1021/es00066a014.

    Article  CAS  Google Scholar 

  • Bi, X., Liang, S., & Li, X. (2013). A novel in situ method for sampling urban soil dust: Particle size distribution, trace metal concentrations, and stable lead isotopes. Environmental Pollution, 177, 48–57. doi:10.1016/j.envpol.2013.01.045.

    Article  CAS  Google Scholar 

  • Cachada, A., Pereira, M. E., Ferreira da Silva, E., & Duarte, A. C. (2012). Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact. Environmental Monitoring and Assessment, 184, 15–32. doi:10.1007/s10661-011-1943-8.

    Article  CAS  Google Scholar 

  • Cardoso Fonseca, E. (1982). Emploi de l’extraction chimique sélective séquentielle et détermination des phases—support du Pb et du Zn en milieux silico-alumineux lors de l’altération supèrgene du prospect de Sanguinheiro (SE Aveiro, Portugal). Comunicações Serviços Geológicos Portugal, 68(2), 267–283.

    Google Scholar 

  • Chang, E. E., Chiang, P. C., Lu, P. H., & Ko, Y. W. (2001). Comparison of metal leachability for various wastes by extraction and leaching methods. Chemosphere, 45, 91–99.

    Article  CAS  Google Scholar 

  • Charlesworth, S., Everett, M., McCarthy, R., et al. (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 29, 563–573.

    Article  CAS  Google Scholar 

  • Costa, C., & Jesus, C. (1999). Case study of heavy metals in Estarreja (Portugal). In R. N. Yong and H. R. Thomas (Ed) Geoenvironmental engineering ground contamination: pollutant management and remediation (pp 137–145). Hardbound, Electronic, doi: 10.1680/gegcpmar.28401.

  • Costa, C., & Jesus-Rydin, C. (2001). Site investigation on heavy metals contaminated ground in Estarreja—Portugal. Engineering Geology, 60, 39–47.

    Article  Google Scholar 

  • Costa, C., Reis, A. P., Ferreira da Silva, E., Rocha, F., Patinha, C., et al. (2012). Assessing the control exerted by soil mineralogy in the fixation of potentially harmful elements in the urban soils of Lisbon. Portugal: Environmental Earth Sciences. doi:10.1007/s12665-011-1362-8.

    Google Scholar 

  • Councell, T. B., Duckenfield, K. U., Landa, E. R., & Callender, E. (2004). Tire-wear particles as a source of zinc to the environment. Environmental Science and Technology, 38(15), 4206–4214.

    Article  CAS  Google Scholar 

  • Cuong, D. T., & Obbard, J. P. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Applied Geochemistry, 21, 1335–1346.

    Article  CAS  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., & Delalain, P. (2007). Bioaccessibility of lead in high carbonate soils. Journal of Environmental Science and Health, Part A., 42, 1331–1339.

    Article  CAS  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., et al. (2012). In Vivo validation of the unified barge method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils”. Environmental Science and Technology, 46, 6252–6260.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N. S. (2008). Health effects of atmospheric particulates: A medical geology perspective. Journal of Environmental Science and Health Part C, 26, 1–39. doi:10.1080/10590500801907340.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N. S., Wong, C. S. C., Song, Z. G., Aydin, A., et al. (2006). Fate of heavy metal contaminants in road dusts and gully sediments in Guangzhou, SE China: A chemical and mineralogical assessment. Human and Ecological Risk Assessment, 12, 374–389. doi:10.1080/10807030500538005.

    Article  CAS  Google Scholar 

  • Ellickson, K. M., Meeker, R. J., Gallo, M. A., Buckley, B. T., & Lioy, P. J. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of Environmental Contamination and Toxicology, 40, 128–135.

    Article  CAS  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857. doi:10.1039/b207574c.

    Article  CAS  Google Scholar 

  • Fonseca, E. C., & Martin, H. (1986). The selective extraction of Pb and Zn in selected mineral and soil samples, application in geochemical exploration (Portugal). Journal of Geochemical Exploration., 26(3), 231–248.

    Article  CAS  Google Scholar 

  • Ge, Y., Murray, P., & Hendershot, W. H. (2000). Trace metal speciation and bioavailability in urban soils. Environmental Pollution, 107(1), 137–144.

    Article  CAS  Google Scholar 

  • Grøn, C., & Andersen, L. (2003). Human bioaccessibility of heavy metals and PAH from soil.DHI—Water and Environment. Danish Environmental Protection Agency. No. 840 2003.

  • Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., & Kokot, S. (2012). Role of solids in heavy metals buildup on urban road surfaces. Journal of Environmental Engineering, 138(4), 490–498. doi:10.1061/(ASCE)EE.1943-7870.0000487.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Laxen, D. P. H., & Wilson, S. J. (1981). Chemical association of lead, cadmium, copper and zinc in street dust and roadside soil. Environ Science Technology, 15, 1378–1383.

    Article  CAS  Google Scholar 

  • Howard, J. L., Dubay, B. R., McElmurry, S. P., Clemence, J., & Daniels, W. L. (2013). Comparison of sequential extraction and bioaccessibility analyses of lead using urban soils and reference materials. Water, Air, and Soil pollution, 224, 1678. doi:10.1007/s11270-013-1678-y.

    Article  Google Scholar 

  • Inácio, M. M., Pereira, V., & Pinto, M. S. (1998). Mercury contamination in sandy soils surrounding an industrial emission source Estarreja, Portugal. Geoderma, 85, 325–339.

    Article  Google Scholar 

  • Kersten, M., & Förstner, U. (1986). Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Science and Technology, 18, 121–130.

    CAS  Google Scholar 

  • Kheboian, C., & Bauer, C. F. (1987). Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Analytical Chemistry, 59, 1417–1423. doi:10.1021/ac00137a010.

    Article  CAS  Google Scholar 

  • Li, X. D., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health, Part A, 42, 1241–1250. doi:10.1080/10934520701435684.

    Article  CAS  Google Scholar 

  • Lu, S. G., & Bai, S. Q. (2010). Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: relationship with different land uses. Environmental Earth Sciences, 60(7), 1481–1490.

    Article  CAS  Google Scholar 

  • Madrid, F., Diaz-Barrientos, E., & Madrid, L. (2008). Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla. Environmental Pollution, 156, 605–610.

    Article  CAS  Google Scholar 

  • Manno, E., Varrica, D., & Dongarra, G. (2006). Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmospheric Environment, 40, 5929–5941. doi:10.1016/j.atmosenv.2006.05.020.

    Article  CAS  Google Scholar 

  • Molina, R. M., Schaiderb, L. A., Donagheya, T. C., Shineb, J. P., & Braina, J. D. (2013). Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc. Environmental Pollution, 182, 217–224. doi:10.1016/j.envpol.2013.07.013.

    Article  CAS  Google Scholar 

  • Monaci, F., Moni, F., Panciotti, E., Grech, D., & Bargagli, R. (2000). Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environmental Pollution, 107, 321–327.

    Article  CAS  Google Scholar 

  • Moreno, F. S. B. A. (2000). Estudo dos mecanismos de dispersão de elementos vestigiais em sedimentos de correntes e águas superficiais da bacia hidrográfica do rio Antuã. Tese de Doutoramento: Departamento de Geociências, Universidade de Aveiro.

    Google Scholar 

  • Muschack, W. (1990). Pollution of street runoff by traffic and local conditions. The Science of the Total Environment, 93, 419–431.

    Article  CAS  Google Scholar 

  • Naqerotte, S. M., & Day, J. P. (1998). Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Analyst, 123, 59–62.

    Article  Google Scholar 

  • Nathanail, C. P., & Smith, R. (2007). Incorporating bioaccessibility in detailed quantitative human health risk assessments. Journal of Environmental Science and Health A, 42(9), 1193–1202.

    Article  CAS  Google Scholar 

  • Novotny, V. (1995). Diffuse Sources of Pollution by Toxic Metals and Impact on Receiving Waters. In W. Salomons, U. Forstner, & P. Mader (Eds.), Heavy Metals: Problems and Solutions (pp. 33–52). Germany: Springer-Verlag.

    Chapter  Google Scholar 

  • Okorie, A., Entwistle, J., & Dean, J. R. (2012). Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere, 86(5), 460–467. doi:10.1016/j.chemosphere.2011.09.047.

    Article  CAS  Google Scholar 

  • Oomen, A. G. (2000). Determinants of oral bioavailability of soil-borne contaminants. Utrecht: Universiteit Utrecht.

    Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Scoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Sciences and Technology, 36, 3326–3334. doi:10.1021/es010204v.

    Article  CAS  Google Scholar 

  • Patinha, C., Ferreira da Silva, E., & Cardoso Fonseca, E. (2004). Mobilisation of arsenic at the Talhadas old mining area—Central Portugal. Journal of Geochemical Exploration, 84(3), 167–180. doi:10.1016/j.gexplo.2004.08.001. 0375-6742.

    Article  CAS  Google Scholar 

  • Patinha, C., Reis, A. P., Dias, C., Cachada, A., Adão, R., et al. (2012). Lead availability in soils from Portugal’s Centre Region with special reference to bioaccessibility. Environmental Geochemistry and Health,. doi:10.1007/s10653-011-9431-1.

    Google Scholar 

  • Pickering, W. F. (1986). Metal ion speciation; soils and sediments. (a review). Ore Geology Reviews, 1, 83–146.

    Article  CAS  Google Scholar 

  • Poggio, L., Vrscaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2008). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157(2), 680–689.

    Article  Google Scholar 

  • Reeder, R. J., Schoonen, M., Lanzirotti, A. (2006). Metal speciation and its role in bioaccessibility and bioavailability. In: N. Sahai, MAA Schoonen, (eds.), Medical mineralogy and geochemistry virginia: The mineralogical society of America (Vol. 64, pp. 59–114).

  • Reis, A. P., Patinha, C., Ferreira da Silva, E., & Sousa, A. J. (2012). Metal fractionation of cadmium, lead and arsenic of geogenic origin in topsoils from the Marrancos gold mineralisation, northern Portugal. Environmental Geochemistry and Health, 34, 229–241. doi:10.1007/s10653-011-9433-z.

  • Reis, A. P., Patinha, C., Noack, Y., Robert, S., Dias A. C. & Ferreira da Silva, E. (2013). Assessing the health risk of aluminium, zinc and lead in outdoor dusts collected in recreational sites used by children at an industrial area in the western part of the Bassin Minier de Provence, France. Journal of African Earth Sciences. doi:10.1016/j.jafrearsci.2013.08.001.

  • Roberston, D. J., Taylor, K. G., & Hoon, S. R. (2003). Geochemical and mineral magnetic characterization of urban sediment particulates, Manchester, UK. Applied Geochemistry, 18, 269–282.

    Article  Google Scholar 

  • Roger, S., Montrejaud-Vignoles, M., Andral, M. C., Herremans, L., & Fortune, J. P. (1998). Mineral, physical and chemical analysis of the solid matter carried by motorway runoff water. Water Research, 32, 1119–1125.

    Article  CAS  Google Scholar 

  • Roussel, H., Waterlot, C., Pelfrêne, A., Pruvot, C., Mazzuca, M., & Douay, F. (2010). Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Archives of Environmental Contamination and Toxicology, 58, 945–954.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Scoof, R., Brattin, W., Goldade, M., Post, G., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Schumacher, B. A. (2002). Methods for determination of total organic carbon (TOC) in soil and sediments. USEPA: Ecological Risk Assessment Support Centre.

    Google Scholar 

  • Sezgin, N., Kurtulus, H., Demir, G., Nemlioglu, S., & Bayat, C. (2003). Determination of heavy metal concentrations in street dust in Istanbul E-5 highway. Environment International, 29, 979–985.

    Article  Google Scholar 

  • Smith, K. S., & Huyck, H. L. O. (1999) An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals; In Plumlee, G.S., and Logsdon, M.J. (eds.), The environmental geochemistry of mineral deposits, Part A: Processes, techniques, and health issues: Society of economic geologists, reviews in economic geology, 6A, 29–70.

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Kartal, S., & Elci, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413, 33–40.

    Article  CAS  Google Scholar 

  • U.S. EPA. (2000). Short sheet: TRW Recommendations for sampling and analysis of soil at lead (Pb) Sites. OSWER 9285: 7–38.

  • Wragg, J. & Cave, M. R., (2003). Methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: A critical review (R&D Technical Report P5-062/TR/01), UK: Environment Agency.

  • Wragg, J., Cave, M. R., Basta, N., Brandon, E., Casteel, S., et al. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409, 4016–4030. doi:10.1016/j.scitotenv.2011.

    CAS  Google Scholar 

  • Wragg, J., Cave, M. R., Taylor, H., Basta, N., Brandon, E., Casteel, S. et al. (2009). Inter-laboratory trial of a unified bioaccessibility procedure. British Geological Survey, Open Report, OR/07/027, 90pp.

  • Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of Total Environment, 408, 726–733. doi:10.1016/J.scitotenv.2009.10.075.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Labex DRIIHM and the Réseau des Observatoire Hommes-Millieux-Centre National de la Recherche Scientifique (ROHM-CNRS) for the support to the project “Oral Bioaccessibility estimates of arsenic in street dusts from Estarreja city, Portugal, to assess exposure and risk to human health” and the Foundation for Science and the Technology (FCT) for supporting the project PEst-C/CTE/UI4035/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Patinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patinha, C., Reis, A.P., Dias, A.C. et al. The mobility and human oral bioaccessibility of Zn and Pb in urban dusts of Estarreja (N Portugal). Environ Geochem Health 37, 115–131 (2015). https://doi.org/10.1007/s10653-014-9634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9634-3

Keywords

Navigation