Skip to main content

Advertisement

Log in

Enrichment and exposure assessment of As, Cr and Pb of the soils in the vicinity of Stawell, Victoria, Australia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Stawell Gold Mine in NW Victoria, Australia, mines ores that contain large concentrations of As and significant quantities of the metals Pb and Cr. The aim of this research was to understand the dispersion, enrichment and probable exposure of these potentially hazardous elements around the mine site. Fifty-five surface soil samples were collected near the mine (<15 km) and analysed by ICP-MS/OES following bioavailable and four-acid extractions. Soils near the mine show greater concentrations of As, Cr and Pb than those near a regionally determined background. This is attributed to the combination of a natural geochemical halo around mineralization and anthropogenic dispersion due to mining and urbanization. Total As concentrations were between 16 and 946 mg kg−1 near the mine in a regional background of 1–16 mg kg−1. Total Cr concentrations were between 18 and 740 mg kg−1 near the mine in a regional background of 26–143 mg kg−1. Total Pb concentrations were between 12 and 430 mg kg−1 near the mine in a regional background of 9–23 mg kg−1. Dispersion of contaminant elements from the present ore processing is <500 m. The most enriched soils occur close to the town and are unrelated to present mining practices. The bioavailable As, Cr and Pb, soil ingestion rates and Risk Reference Doses were used to estimate health risks. An average toddler (12 kg) would need to consume at least 1.5 g, and most likely 12 g, of soil per day to show some symptoms of As toxicity. The maximum measured bioavailable As would pose a risk at average ingestion rates of 200 mg per day. Individuals with soil-eating disorders would exceed the safe daily consumption limits for As, and potentially Cr and Pb. Small children are not typically exposed to soil everyday, very few have soil eating disorders, and, therefore, the health risk from the soils around the mine is minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alam, M. G. M., Allinson, G., Stagnitti, F., Tanaka, A., & Westbrooke, M. (2002). Arsenic contamination in Bangladesh groundwater: a major environmental and social disaster. International Journal of Environmental Health Research, 12, 235–253. doi:10.1080/0960312021000000998.

    Article  CAS  Google Scholar 

  • Alam, M. G. M., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. The Science of the Total Environment, 308, 83–96. doi:10.1016/S0048-9697(02)00651-4.

    Article  CAS  Google Scholar 

  • ANZECC. (2000). Australian and New Zealand guidelines for fresh and marine water quality, 1. Canberra, ACT: Australian and New Zealand Environment and Conservation Council and Agriculture and Resources Management Council of Australia and New Zealand.

    Google Scholar 

  • ANZECC/NHMRC. (1992). Australian and New Zealand guidelines for the assessment and management of contaminated sites. Canberra, ACT: Australian and New Zealand Environment and Conservation Council/National Health and Medical Research Council.

    Google Scholar 

  • ATSDR. (2000). Toxicological profile for chromium. Atlanta, Georgia: Agency for Toxic Substances and Disease Registry U.S. Department of Human and Health Services.

    Google Scholar 

  • ATSDR. (2001). Comprehensive environmental response, compensation, and liability act (CERCLA) hazardous substance. Atlanta, Georgia: Agency for Toxic Substances and Disease Registry U.S. Department of Human and Health Services.

    Google Scholar 

  • ATSDR. (2007a). Toxicological profile for arsenic. Atlanta, Georgia: Agency for Toxic Substances and Disease Registry U.S. Department of Human and Health Services.

    Google Scholar 

  • ATSDR. (2007b). Toxicological profile for lead. Atlanta, Georgia: Agency for Toxic Substances and Disease Registry U.S. Department of Human and Health Services.

    Google Scholar 

  • Bureau of Meteorology. (2006). Climate data from regional (Stawell) weather stations online. http://www.bom.gov.au/ Retrieved June 6, 2006. Bureau of Meteorology, Canberra, ACT.

  • Calabrese, E. J., Stanek, E. J., James, R. C., & Roberts, S. M. (1997). Soil ingestion: a concern for acute toxicity in children. Environmental Health Perspectives, 105, 1354–1358. doi:10.2307/3433755.

    Article  CAS  Google Scholar 

  • Chen, C. J., Chen, C. W., Wu, M. M., & Kuo, T. L. (1992). Cancer potential in liver, lung, bladder, and kidney due to ingested inorganic arsenic in drinking water. British Journal of Cancer, 66, 888–892.

    Article  CAS  Google Scholar 

  • Chung, E., Lee, J.-S., Chon, H.-T., & Sager, M. (2005). Environmental contamination and bioaccessibility of arsenic and metals around the Dongjeong Au–Ag-Cu mine, Korea. Geochemistry Exploration Environment Analysis, 5, 69–74. doi:10.1144/1467-7873/03-060.

    Article  CAS  Google Scholar 

  • Department of Environment. (2003). Assessment levels for soil, sediment and water. Version 3, Department of Environment, Perth.

  • Department of Natural Resources. (2002). Concongella catchment hydrogeological units. Victoria: Stawell.

    Google Scholar 

  • Dudka, S., & Miller, W. P. (1999). Permissible concentrations of arsenic and lead in soils based on risk assessment. Water, Air, and Soil pollution, 113, 127–132. doi:10.1023/A:1005028905396.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmospheric Environment, 39, 4501–4512. doi:10.1016/j.atmosenv.2005.03.026.

    Article  CAS  Google Scholar 

  • Francesconi, K. A., & Kuehnelt, D. (2002). Arsenic compounds in the environment. In W. T. Frankenberger (Ed.), Environmental chemistry of arsenic (pp. 51–94). New York: Marcel Dekker.

    Google Scholar 

  • Hamon, R. E., McLaughlin, M. J., Gilkes, R. J., Rate, A. W., Zarcinas, B., Robertson, A., et al. (2004). Geochemical indices allow estimation of heavy metalbackground concentrations in soil. Global Biogeochemical Cycles, 18, GB1014. doi:10.1029/2003GB002063.

  • Hans Wedepohl, K. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232. doi:10.1016/0016-7037(95)00038-2.

    Article  Google Scholar 

  • Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34, 4304–4312. doi:10.1016/S0043-1354(00)00182-2.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Kim, K. W., Ahn, J., Ko, I., & Lee, C. H. (2005). Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environmental Geochemistry and Health, 27, 193–203. doi:10.1007/s10653-005-0127-2.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Kim, K. W., Lee, J. U., Lee, J. S., & Cook, J. (2002). Assessment of As and heavy metal contamination in the vicinity of Duckum Au–Ag mine, Korea. Environmental Geochemistry and Health, 24, 215–227. doi:10.1023/A:1016096017050.

    Article  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., Wilner, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46. doi:10.1080/10643389991259164.

    Article  CAS  Google Scholar 

  • Krachler, M., Emons, H., & Zheng, J. (2001). Speciation of antimony for the 21st century: promises and pitfalls. Trends in Analytical Chemistry, 20, 79–90. doi:10.1016/S0165-9936(00)00065-0.

    Article  CAS  Google Scholar 

  • Langley, A. (1996). Health risk assessment and management of contaminated sites in Australia. In R. Naidu, R. S. Kookuna, D. P. Olwes, S. Rogers, & M. J. McLaughlin (Eds.), Contaminants and the soil environment in the Australasia-Pacific Region (pp. 281–307). Dordrecht: Kluwer Academic Publishers.

  • Lin, Z., & Puls, R. W. (2003). Potential indicators for the assessment of arsenic natural attenuation in the subsurface. Advances in Environmental Research, 7, 825–834. doi:10.1016/S1093-0191(02)00056-4.

    Article  CAS  Google Scholar 

  • Liu, J., Zheng, B. S., Aposhian, H. V., Zhou, Y. S., Chen, M. L., Zhang, A. H., et al. (2002). Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environmental Health Perspectives, 110, 119–122.

    Article  Google Scholar 

  • Lottermoser, B. (2002). Exposure assessment of naturally metal enriched topsoils, Port Macquarie, Australia. Environmental Geochemistry and Health, 24, 183–190. doi:10.1023/A:1016056615002.

    Article  CAS  Google Scholar 

  • Manahan, S. E. (2000). Environmental chemistry. New York: CRC Press.

    Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235. doi:10.1016/S0039-9140(02)00268-0.

    Article  CAS  Google Scholar 

  • Matschullat, J. (2000). Arsenic in the geosphere––a review. The Science of the Total Environment, 249, 297–312. doi:10.1016/S0048-9697(99)00524-0.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Hamon, R. E., McClaren, R. G., Speir, T. W., & Rogers, S. L. (2000). Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38, 1037–1086. doi:10.1071/SR99128.

    Article  CAS  Google Scholar 

  • Miller, J. M., Dugdale, L. J., & Wilson, C. J. L. (2001). Variable hanging wall pale transport during Silurian and Devonian thrusting in the western Lachlan Fold Belt: missing gold lodes, synchronous Melbourne trough sedimentation and Grampians group fold interference. Australian Journal of Earth Sciences, 48, 901–909. doi:10.1046/j.1440-0952.2001.00908.x.

    Article  Google Scholar 

  • Miller, J. M. L., Wilson, C. J. L., & Dugdale, L. J. (2006). Stawell gold deposit; a key to unravelling the Cambrian to early Devonian structural evolution of the western Victorian goldfields. Australian Journal of Earth Sciences, 53, 677–695. doi:10.1080/08120090600823313.

    Article  Google Scholar 

  • Munksgaard, N. C., & Parry, D. L. (2002). Metals, arsenic and lead isotopes in near pristine estuarine and marine coastal sediments from northern Australia. Marine & Freshwater Research, 53, 719–729. doi:10.1071/MF01060.

    Article  CAS  Google Scholar 

  • Needleman, H. L., Schell, A., Bellinger, D., Leviton, A., & Allred, E. N. (1990). The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. The New England Journal of Medicine, 322, 83. Abstract.

    Google Scholar 

  • Noble, R. R. P. (2007). Distribution of arsenic in regolith above buried mineralisation: implications for exploration and environmental management. Dissertation. Curtin University of Technology.

  • Pekey, H., Karakas, D., Ayberk, S., & Bakoglu, M. (2004). Ecological risk assessment from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48, 946–953. doi:10.1016/j.marpolbul.2003.11.023.

    Article  CAS  Google Scholar 

  • Rowbotham, A. L., Levy, L. S., & Shukler, L. K. (2000). Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 3, 145–178. doi:10.1080/10937400050045255.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., et al. (1993). Development of an in vitro screening test to evaluate the in vitro bioaccessibility of ingested mine-waste lead. Environmental Science and Technology, 27, 2870–2877. doi:10.1021/es00049a030.

    Article  CAS  Google Scholar 

  • Ruby, M. W., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430. doi:10.1021/es950057z.

    Article  CAS  Google Scholar 

  • Schaubs, P. M., Rawling, T. J., Dugdale, L. J., & Wilson, C. J. L. (2006). Factors controlling the location of gold mineralisation around basalt domes in the Stawell Corridor: insights from coupled 3D deformation––fluid-flow numerical models. Australian Journal of Earth Sciences, 53, 841–862. doi:10.1080/08120090600827496.

    Article  Google Scholar 

  • Shan, G., Luo, T. C., Zhang, B. R., Zhang, H. F., Han, Y. W., Zhao, Z. D., et al. (1998). Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62, 1959–1975. doi:10.1016/S0016-7037(98)00121-5.

    Article  Google Scholar 

  • Soil Survey Staff. (1993). Soil survey manual. USDA handbook, 18. Washington, D.C: USDA Government Printing Office.

    Google Scholar 

  • Soil Survey Staff. (1996). Soil survey laboratory methods manual. Soil Survey Investigation Report, 42. Lincoln, Nebraska, National Soil Survey Center.

  • Soil Survey Staff. (1999). Keys to soil taxonomy. Blacksburg, Virginia: Pocahontas Press.

    Google Scholar 

  • Sterckeman, T., Douay, F., Baize, D., Fourrier, H., Proix, N., & Schvartz, C. (2006). Trace elements in soils developed in sedimentary materials from Northern France. Geoderma, 136, 912–929. doi:10.1016/j.geoderma.2006.06.010.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Gomez, A., & Ciesielski, H. (1996). Soil waste analysis for environmental risk assessment in France. The Science of the Total Environment, 178, 63–69. doi:10.1016/0048-9697(95)04798-0.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265. doi:10.1029/95RG00262.

    Article  Google Scholar 

  • U.S.EPA. (1996). IRIS: integrated risk information system. Englewood, Colorado: Micromedex Inc.

    Google Scholar 

  • Voigt, D. E., Brantley, S. L., & Hennet, R. J.-C. (1996). Chemical fixation of arsenic in contaminated soils. Applied Geochemistry, 11, 633–643. doi:10.1016/S0883-2927(96)00009-1.

    Article  CAS  Google Scholar 

  • Williams, B., & Radojkovic, A. M. (2004). The regolith of the Ararat 1:100 000 map area. Melbourne: Victorian Initiative for Minerals and Petroleum, Department of Primary Industries.

    Google Scholar 

  • Williams, T. M., Rawlins, B. G., Smith, B., & Breward, N. (1998). In vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibun, Southern Thailand: a basis for improved human risk assessment. Environmental Geochemistry and Health, 20, 169–177. doi:10.1023/A:1006545817478.

    Article  CAS  Google Scholar 

  • Zheng, B., Ding, Z., Huang, R., Zhu, J., Yu, X., Wang, A., et al. (1999). Issues of health and disease relating to coal use in south-western China. International Journal of Coal Geology, 40, 119–132. doi:10.1016/S0166-5162(98)00064-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank David Gray, Ian Robertson and an anonymous reviewer for reviewing the manuscript, Travis and Naughton and Angelo Vartesi for figure drafting. Thanks also are due to CRC LEME, CSIRO, SGM, and the Environmental Inorganic Geochemistry Group (EIGG) at Curtin University for support. Financial support for this research came from an Australian Postgraduate Award, and through CRC LEME scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan R. P. Noble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noble, R.R.P., Hough, R.M. & Watkins, R.T. Enrichment and exposure assessment of As, Cr and Pb of the soils in the vicinity of Stawell, Victoria, Australia. Environ Geochem Health 32, 193–205 (2010). https://doi.org/10.1007/s10653-009-9275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9275-0

Keywords

Navigation