Skip to main content
Log in

Genotypic variation in element concentrations in brown rice from Yunnan landraces in China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The mineral elements present in brown rice play an important physiological role in global human health. We investigated genotypic variation of eight of these elements (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) in 11 different grades of brown rice on the basis of the number and distance coefficients of 282 alleles for 20 simple sequence repeat (SSR) markers. Six-hundred and twenty-eight landraces from the same field in Yunnan Province, one of the largest centers of genetic diversity of rice (Oryza sativa L.) in the world, formed our core collection. The mean concentrations (mg kg−1) of the eight elements in brown rice for these landraces were P (3,480) > K (2,540) > Mg (1,480) > Ca (157) > Zn (32.8) > Fe (32.0) > Cu (13.6) > Mn (13.2). Mean P concentrations in brown rice were 6.56 times total soil P, so the grains are important in tissue storage of P, but total soil K is 7.82 times mean K concentrations in brown rice. The concentrations of the eight elements in some grades of brown rice, on the basis of the number and distance coefficients of alleles for 20 SSR markers for the landraces, were significantly different (P < 0.05), and further understanding of the relationship between mineral elements and gene diversity is needed. There was large variation in element concentrations in brown rice, ranging from 2,160 to 5,500 mg P kg−1, from 1,130 to 3,830 mg K kg−1, from 61.8 to 488 mg Ca kg−1, from 864 to 2,020 mg Mg kg−1, from 0.40 to 147 mg Fe kg−1, from 15.1 to 124 mg Zn kg−1, from 0.10 to 59.1 mg Cu kg−1, and from 6.7 to 26.6 mg Mn kg−1. Therefore, germplasm evaluations for Ca, Fe, and Zn concentrations in rice grains have detected up to sevenfold genotypic differences, suggesting that selection for high levels of Ca, Fe, and Zn in breeding for mass production is a feasible approach. Increasing the concentrations of Ca, Fe, and Zn in rice grains will help alleviate chronic Ca, Zn, and Fe deficiencies in many areas of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

P:

Phosphorus

K:

Potassium

Ca:

Calcium

Mg:

Magnesium

Fe:

Iron

Zn:

Zinc

Cu:

Copper

Mn:

Manganese

N:

Nitrogen

SSR:

Simple sequence repeat

References

  • Aschner, J. L., & Aschner, M. (2005). Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine, 26, 353–362. doi:10.1016/j.mam.2005.07.003.

    Article  CAS  Google Scholar 

  • Bakker, C., Rodenburg, J., & van Bodegom, P. M. (2005). Effects of Ca- and Fe-rich seepage on P Availability and plant performance in calcareous dune soils. Plant and Soil, 275, 111–122. doi:10.1007/s11104-005-0438-1.

    Article  CAS  Google Scholar 

  • Bassam, B. J., Caetano-Anolles, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196, 80–83. doi:10.1016/0003-2697(91)90120-I.

    Article  CAS  Google Scholar 

  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Plant and Soil, 302, 1–17. doi:10.1007/s11104-007-9466-3.

    Article  CAS  Google Scholar 

  • Desai, V., & Kaler, S. G. (2008). Role of copper in human neurological disorders. The American Journal of Clinical Nutrition, 88, 855–858.

    Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus (San Francisco, Calif.), 12, 13–15.

    Google Scholar 

  • Hajiboland, R., & Beiramzadeh, N. (2008). Rhizosphere properties of rice genotypes as influenced by anoxia and availability of zinc and iron. Pesquisa Agropecuaria Brasileira, 43, 613–622. doi:10.1590/S0100-204X2008000500009.

    Article  Google Scholar 

  • Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H. Y., et al. (2007). Rice OsHKT2, 1 transporter mediates large Na+ influx component into K+-starved roots for growth. The EMBO Journal, 26, 3003–3014. doi:10.1038/sj.emboj.7601732.

    Article  CAS  Google Scholar 

  • Huang, B. A., Zhao, Y. C., Sun, W. X., Yang, R. Q., Gong, Z. T., Zou, Z. (2008). Relationships between distributions of longevous population and trace elements in the agricultural ecosystem of Rugao County, Jiangsu, China. Environmental Geochemistry and Health. doi:10.1007/s10653-008-9177-6.

  • Huber, C., & Wächtershäuser, G. (2006). α-Hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science, 314, 630–632. doi:10.1126/science.1130895.

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature, 436, 793–800. doi:10.1038/nature03895.

    Article  Google Scholar 

  • Jiang, S. L., Shi, C. H., & Wu, J. G. (2007). Determination of trace amount for germanium (Ge) by atomic fluorescence spectrometry in rice (Oryza sativa L.). Journal of Food Quality, 30, 481–495. doi:10.1111/j.1745-4557.2007.00137.x.

    Article  CAS  Google Scholar 

  • Jung, M. C., Yun, S. T., Lee, J. S., & Lee, J. U. (2005). Baseline study on essential and trace elements in polished rice from South Korea. Environmental Geochemistry and Health, 27, 455–464. doi:10.1007/s10653-005-4221-2.

    Article  CAS  Google Scholar 

  • Katzel, J. A., Hari, P., & Vesole, D. H. (2007). Multiple myeloma: charging toward a bright future. CA: A Cancer Journal for Clinicians, 57, 301–318. doi:10.3322/CA.57.5.301.

    Article  Google Scholar 

  • Killilea, D. W., & Ames, B. N. (2008). Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105, 5768–5773. doi:10.1073/pnas.0712401105.

    Article  CAS  Google Scholar 

  • Kim, S. K., Park, P. J., Byun, H. G., Je, J. Y., & Moon, S. H. (2003). Recovery of fish bone from hoki (Johnius belengeri) frame using a proteolytic enzyme isolated from mackerel intestine. Journal of Food Biochemistry, 27, 255–266. doi:10.1111/j.1745-4514.2003.tb00280.x.

    Article  CAS  Google Scholar 

  • Lin, N. F., Tang, J., & Bian, J. M. (2004). Geochemical environment and health problems in China. Environmental Geochemistry and Health, 26, 81–88. doi:10.1023/B:EGAH.0000020987.74065.1d.

    Article  CAS  Google Scholar 

  • Liu, Q., Wang, D. J., Jiang, X. J., & Cao, Z. H. (2004). Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza Sativa). Environmental Geochemistry and Health, 26, 325–330. doi:10.1023/B:EGAH.0000039597.75201.57.

    Article  CAS  Google Scholar 

  • Liu, Q. L., Xu, X. H., Ren, X. L., Fu, H. W., Wu, D. X., & Shu, Q. Y. (2007). Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theoretical and Applied Genetics, 114, 803–814. doi:10.1007/s00122-006-0478-9.

    Article  CAS  Google Scholar 

  • Lu, K. Y., Li, L. Z., Zheng, X. F., Zhang, Z. H., Mou, T. M., & Hu, Z. L. (2008). Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. Journal of Genetics, 87, 305–310. doi:10.1007/s12041-008-0049-8.

    Article  Google Scholar 

  • Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M. et al. (2006). A silicon transporter in rice. Nature, 440, 688–691. doi:10.1038/nature04590.

    Article  CAS  Google Scholar 

  • Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T. et al. (2007). An efflux transporter of silicon in rice. Nature, 448, 209–212. doi:10.1038/nature05964.

    Article  CAS  Google Scholar 

  • McDonald, G. K., Genc, Y., & Graham, R. D. (2008). A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant and Soil, 306, 49–55. doi:10.1007/s11104-008-9555-y.

    Article  CAS  Google Scholar 

  • Meharg, A. A., Lombi, E., Williams, P. N., Scheckel, K., Feldmann, J., Raab, A. et al. (2008). Speciation and localization of arsenic in white and brown rice grains. Environmental Science and Technology, 42, 1051–1057. doi:10.1021/es702212p.

    Article  CAS  Google Scholar 

  • Murata, K., Kamei, T., Toriumi, Y., Kobayashi, Y., Iwata, K., Fukumoto, I. et al. (2007). Effect of processed rice with brown rice extracts on serum cholesterol level. Clinical and Experimental Pharmacology and Physiology, 34, 87–89. doi:10.1111/j.1440-1681.2007.04790.x.

    Article  Google Scholar 

  • Panaud, O., Chen, X., & McCouch, S. R. (1996). Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Molecular and General Genetics, 252(59), 7–607.

    Google Scholar 

  • Pasek, M. A. (2008). Rethinking early earth phosphorus geochemistry. Proceedings of the National Academy of Sciences of the United States of America, 105, 853–858. doi:10.1073/pnas.0708205105.

    Article  CAS  Google Scholar 

  • Prasad, A. S. (2008). Zinc in human health: Effect of zinc on immune cells. Molecular Medicine (Cambridge, Mass.), 14, 353–357. doi:10.2119/2008-00033.Prasad.

    CAS  Google Scholar 

  • Ruan, J., Ma, L. F., & Shi, Y. Z. (2006). Aluminium in tea plantations: Mobility in soils and plants, and the influence of nitrogen fertilization. Environmental Geochemistry and Health, 28, 519–528. doi:10.1007/s10653-006-9047-z.

    Article  CAS  Google Scholar 

  • Sakamoto, S., Hayashi, T., Hayashi, K., Murai, F., Hori, M., Kimoto, K. et al. (2007). Pre-germinated brown rice could enhance maternal mental health and immunity during lactation. European Journal of Clinical Nutrition, 46, 391–396. doi:10.1007/s00394-007-0678-3.

    Article  CAS  Google Scholar 

  • Sica, D. A., Struthers, A. D., Cushman, W. C., Wood, M., Banas, J. S., & Epstein, M. (2002). Importance of potassium in cardiovascular disease. Journal of Clinical Hypertension, 4, 198–206. doi:10.1111/j.1524-6175.2002.01728.x.

    Article  CAS  Google Scholar 

  • Sun, G. X., Williams, P. N., Carey, A. M., Zhu, Y. G., Deacon, C., Raab, A. et al. (2008). Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environmental Science and Technology, 42, 7542–7546. doi:10.1021/es801238p.

    Article  CAS  Google Scholar 

  • Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., & Dubcovski, J. (2006). A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science, 314, 1298–1301. doi:10.1126/science.1133649.

    Article  CAS  Google Scholar 

  • Umesawa, M., Iso, H., Date, C., Yamamoto, A., Toyoshima, H., Watanabe, Y. et al. (2008). Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease. The American Journal of Clinical Nutrition, 88, 195–202.

    CAS  Google Scholar 

  • Wang, X. M., Yi, K. K., Tao, Y., Wang, F., Wu, Z. C., Jiang, D. A. et al. (2006). Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level. Plant, Cell & Environment, 29, 1924–1935. doi:10.1111/j.1365-3040.2006.01568.x.

    Article  CAS  Google Scholar 

  • White, P. J. & Broadley M. R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Science, 10, 586–593. doi:10.1016/j.tplants.2005.10.001.

    Article  Google Scholar 

  • Wissuwa, M., Ismail, A. M., & Graham, R. D. (2008). Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant and Soil, 306, 34–48. doi:10.1007/s11104-007-9368-4.

    Article  Google Scholar 

  • Yang, X. E., Chen, W. R., & Feng, Y. (2007). Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environmental Geochemistry and Health, 29, 413–428. doi:10.1007/s10653-007-9086-0.

    Article  CAS  Google Scholar 

  • Yang, X., Ye, Z. Q., Shi, C. H., Zhu, M. L., & Graham, R. D. (1998). Genotypic differences in concentrations of iron, manganese, copper and zinc in polish rice grain. Journal of Plant Nutrition, 21, 1453–1462. doi:10.1080/01904169809365495.

    Article  CAS  Google Scholar 

  • Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia: 1 Peninsular Malaysia. Environmental Geochemistry and Health, 26, 343–357. doi:10.1007/s10653-005-4669-0.

    Article  CAS  Google Scholar 

  • Zeng, Y. W., Shen, S. Q., Li, Z. C., Yang, Z. Y., Wang, X. K., Zhang, H. L. et al. (2003). Ecogeographic and genetic diversity based on morphological characters of indigenous rice (Oryza sativa L.) in Yunnan, China. Genetic Resources and Crop Evolution, 50(56), 6–577.

    Google Scholar 

  • Zeng, Y. W., Shen, S. Q., Wang, L. X., Liu, J. F., Pu, X. Y., Du, J. et al. (2005). Correlation of plant morphological and grain quality traits with mineral element contents in Yunnan rice. La Ricerca Scientifica, 12, 101–106.

    Google Scholar 

  • Zeng, Y. W., Wang, L. X., Du, J., Liu, J. F., Yang, S. M., Pu, X. Y. et al. (2009c). Elemental content in brown rice by inductively coupled plasma atomic emission spectroscopy reveals the evolution of Asian cultivated rice. Journal of Integrative Plant Biology, 51, 466–475. doi:10.1111/j.1744-7909.2009.00820.x.

    Google Scholar 

  • Zeng, Y. W., Wang, L. X., Du, J., Yang, S. M., Wang, Y. C., Li, Q. W., Sun, Z. H., Pu, X. Y., Du, W. (2009a). Correlation of mineral elements between milled and brown rice and soils in Yunnan studied by ICP–AES. Spectroscopy and Spectral Analysis, 29, 1413–1417.

  • Zeng, Y. W., Wang, L. X., Pu, X. Y., Du, J., Yang, S. M., Liu, J. F. et al. (2009b). The zonal characterization of elemental concentrations in brown rice of core collection for rice landrace in Yunnan Province by ICP–AES. Spectroscopy and Spectral Analysis, 29(6), 1691–1695.

    Google Scholar 

  • Zeng, Y. W., Wang, L. X., Sun, Z. H., Yang, S. M., Du, J., Li, Q. W. et al. (2008). Determination of mineral elements of brown rice in near-isogenic lines population for japonica rice by ICP–AES. Spectroscopy and Spectral Analysis, 28, 2966–2969.

    CAS  Google Scholar 

  • Zeng, Y. W., Zhang, H. L., Li, Z. C., Shen, S. Q., Sun, J. L., Wang, M. X. et al. (2007). Evaluation of genetic diversity in the rice landraces (Oryza sativa L.) in Yunnan, China. Breeding Science, 57, 91–99. doi:10.1270/jsbbs.57.91.

    Article  Google Scholar 

  • Zhang, H. L., Sun, J. L., Wang, M. X., Liao, D. Q., Zeng, Y. W., Shen, S. Q. et al. (2006). Genetic structure and phylogeography of rice landraces in Yunnan, China revealed by SSR. Genome, 51, 72–83.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (no. 30660092), Cooperation Program between Province and Zhejiang University from Yunnan Provincial Scientific and Technology Department (no. 2006YX12) and Yunnan Introduction and Foster Talent (no. 2005PY01-14). We are grateful for many valuable suggestions from Professor Chunlin Long, Professor Xiangkun Wang, and Professor Zichao Li. Mr Shiquan Shen assisted with some of the analyses. We also thank Krisa Fredrickson, a Native American from the California Academy of Sciences, for revising and editing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawen Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Y., Zhang, H., Wang, L. et al. Genotypic variation in element concentrations in brown rice from Yunnan landraces in China. Environ Geochem Health 32, 165–177 (2010). https://doi.org/10.1007/s10653-009-9272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9272-3

Keywords

Navigation