Skip to main content

Advertisement

Log in

Uranium and other trace elements’ distribution in Korean granite: implications for the influence of iron oxides on uranium migration

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

To understand trace radionuclide (uranium) migration occurring in rocks, a granitic batholith located at the Korea Atomic Energy Research Institute (KAERI) site was selected and investigated. The rock samples obtained from this site were examined using mineralogical methods, including scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The changes in the distribution pattern of uranium (U) and small amounts of trace elements, and the mineralogical textures affected by weathering, were examined. Based on the element distribution analyses, it was found that Fe2+ released from fresh biotite is oxidized in short geological time, forming amorphous iron oxides, such as ferrihydrite, around silicate minerals. In that case, the amorphous ferrihydrite does not show distinct adsorption for U. However, as it gradually crystallizes to goethite or hematite, the most U-rich phases were found to be associated with the secondary iron oxides having granular forms. This evidence suggests that the geological subsurface environment is favorable for the crystallized iron oxides to keep their structures more stable for a long time as compared with the amorphous phases. There is a possibility that the long residence of U which is in contact with the stable crystalline phases of iron may finally lead to the partial sequestration of U in their structure. Consequently, it seems that Fe-oxide crystallization can be a dominating mechanism for U uptake and controls long-term U transport in granites with low U contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bargar, J. R., Reitmeyer, R., Lenhart, J. J., & Davis, J. A. (2000). Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochimica et Cosmochimica Acta, 64, 2737–2749. doi:10.1016/S0016-7037(00)00398-7.

    Article  CAS  Google Scholar 

  • Bea, F. (1999). Uranium. In C. P. Marshall & R. W. Fairbridge (Eds.), Encyclopedia of geochemistry (pp. 645–648). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Casas, I., Pablo, J. D., Pérez, I., Giménez, J., Duro, L., & Bruno, J. (2004). Evidence of uranium and associated trace element mobilization and retention processes at Oklo (Gabon), a naturally radioactive site. Environmental Science & Technology, 38, 3310–3315. doi:10.1021/es0353863.

    Article  CAS  Google Scholar 

  • Choo, C. O. (2002). Characteristics of uraniferous minerals in Daebo Granite and significance of mineral species. Journal of Mineralogical Society of Korea, 15, 11–21.

    Google Scholar 

  • Coston, J. A., Fuller, C. C., & Davis, J. A. (1995). Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand. Geochimica et Cosmochimica Acta, 59, 3535–3547. doi:10.1016/0016-7037(95)00231-N.

    Article  CAS  Google Scholar 

  • Duff, M. C., Coughlin, J. U., & Hunter, D. B. (2002). Uranium coprecipitation with iron oxide minerals. Geochimica et Cosmochimica Acta, 66, 3533–3547. doi:10.1016/S0016-7037(02)00953-5.

    Article  CAS  Google Scholar 

  • Edghill, R. (1991). The redistribution of uranium with weathering in the Koongarra uranium deposit. Radiochimica Acta, 52(53), 381–386.

    Google Scholar 

  • Faure, G. (1986). Principles of isotope geology. New York: Wiley.

    Google Scholar 

  • Horie, K., Hidaka, H., & Gauthier-Lafaye, F. (2006). Elemental distribution in zircon: Alteration and radiation-damage effects. Physics and Chemistry of the Earth, 31, 587–592.

    Google Scholar 

  • Hunter, D. B., & Bertsch, P. M. (1998). In situ examination of uranium contaminated soil particles by micro-X-ray absorption and microfluorescence spectroscopies. Journal of Radioanalytical and Nuclear Chemistry, 234, 237–242. doi:10.1007/BF02389778.

    Article  CAS  Google Scholar 

  • Jang, J., Dempsey, B. A., & Burgos, W. D. (2007). A model-based evaluation of sorptive reactivities of hydrous ferric oxide and hematite for U(VI). Environmental Science & Technology, 41, 4305–4310. doi:10.1021/es070068f.

    Article  CAS  Google Scholar 

  • Jeong, G. Y., & Kim, H. B. (2003). Mineralogy, chemistry, and formation of oxidized biotite in the weathering profile of granitic rocks. The American Mineralogist, 88, 352–364.

    CAS  Google Scholar 

  • Koons, R. D., Helmke, P. A., & Jackson, M. L. (1980). Association of trace elements with iron oxides during rock weathering. Soil Science Society of America Journal, 44, 155–159.

    CAS  Google Scholar 

  • Koppi, A. J., Edis, R., Field, D. J., Geering, H. R., Klessa, D. A., & Cockayne, J. H. (1996). Rare earth element trends and cerium-uranium-manganese associations in weathered rock from Koongarra, Northern Territory, Australia. Geochimica et Cosmochimica Acta, 60, 1695–1707. doi:10.1016/0016-7037(96)00047-6.

    Article  CAS  Google Scholar 

  • Krauskopf, K. B. (1986). Thorium and rare earth metals as analogs for actinide elements. Chemical Geology, 55, 323–335. doi:10.1016/0009-2541(86)90033-1.

    Article  CAS  Google Scholar 

  • Lee, S. Y., Baik, M., Cho, W. J., & Hahn, P. (2006). Rock weathering and geochemical characteristics in the KURT. Journal of Korean Radioactive Waste Society, 4, 321–328.

    Google Scholar 

  • Murakami, T., Ohnuki, T., Isobe, H., & Sato, T. (1997). Mobility of uranium during weathering. The American Mineralogist, 82, 888–899.

    CAS  Google Scholar 

  • Nesbitt, H. W. (1979). Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206–210. doi:10.1038/279206a0.

    Article  CAS  Google Scholar 

  • Noseck, U., Brasser, T., Rajlich, P., Laciok, A., & Hercik, M. (2004). Mobility of uranium in tertiary argillaceous sediments—a natural analogue study. Radiochimica Acta, 92, 797–803. doi:10.1524/ract.92.9.797.54972.

    Article  CAS  Google Scholar 

  • Ohnuki, T., Isobe, H., Yanase, N., Nagano, T., Sakamoto, Y., & Sekine, K. (1997). Change in sorption characteristics of uranium during crystallization of amorphous iron minerals. Journal of Nuclear Science and Technology, 34, 1153–1158. doi:10.3327/jnst.34.1153.

    Article  CAS  Google Scholar 

  • Payne, T. E., & Airey, P. L. (2006). Radionuclide migration at the Koongarra uranium deposit, Northern Australia—lessons from the Alligator Rivers analogue project. Physics and Chemistry of the Earth, 31, 572–586.

    Google Scholar 

  • Sato, T., Murakami, T., Yanase, N., Isobe, H., Payne, T. E., & Airey, P. L. (1997). Iron scavenging uranium from groundwater. Environmental Science & Technology, 31, 2854–2858. doi:10.1021/es970058m.

    Article  CAS  Google Scholar 

  • Schwertmann, U., & Cornell, R. M. (2000). Iron oxides in the laboratory. Germany: Wiley-VCH.

    Book  Google Scholar 

  • Stubbs, J. E., Elbert, D. C., Veblen, D. R., & Zhu, C. (2006). Electron microbeam investigation of uranium-contaminated soils from Oak Ridge, TN, USA. Environmental Science & Technology, 40, 2108–2113. doi:10.1021/es0518676.

    Article  CAS  Google Scholar 

  • Taboada, T., Cortizas, A. M., García, C., & García-Rodeja, E. (2006). Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. The Science of the Total Environment, 356, 192–206. doi:10.1016/j.scitotenv.2005.03.030.

    Article  CAS  Google Scholar 

  • Waite, T. D., Davis, J. A., Payne, T. E., Waychunas, G. A., & Xu, N. (1994). Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model. Geochimica et Cosmochimica Acta, 58, 5465–5478. doi:10.1016/0016-7037(94)90243-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yeop Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., Baik, M.H. Uranium and other trace elements’ distribution in Korean granite: implications for the influence of iron oxides on uranium migration. Environ Geochem Health 31, 413–420 (2009). https://doi.org/10.1007/s10653-008-9194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9194-5

Keywords

Navigation