Skip to main content
Log in

The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Changes in speciation and mobility of As by indigenous bacteria in As-contaminated sediments (339 mg/kg) from an abandoned Au–Ag mine area in Korea were investigated after biostimulation with a variety of carbon sources, including acetate, lactate and glucose in batch experiments. Sequential extraction analysis designed to determine the form of As occurrence revealed that 40 and 47% of As were present in the sediment as Fe-associated and residual fractions, respectively. After 22-day incubation with acetate and lactate, the presence of indigenous bacteria increased the amount of total dissolved As from both Fe-associated and residual fractions in the sediment. More than 99% of dissolved As existed as As(V) in biotic slurries in contrast to sterile controls (less than 50% of total dissolved As), which indicated that indigenous bacteria transformed some dissolved As(III) to As(V). In real environments, depending on the pH, microbially-produced aqueous As(V) may be either immobilized through adsorption or reduced to As(III) after migration to the anoxic subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D Ahmann LR Krumholz HF Hemond DR Lovley FMM. Morel (1997) ArticleTitleMicrobial mobilization of arsenic from sediments of the Aberjona watershed Environ Sci Technol 31 2923–2930 Occurrence Handle10.1021/es970124k

    Article  Google Scholar 

  • KM Ahmed Bhattacharya P MA Hasan SH Akhter SMM Alam MAH Bhuyian MB Imam AA Khan O. Sracek (2004) ArticleTitleArsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview Appl Geochem 19 181–200 Occurrence Handle10.1016/j.apgeochem.2003.09.006

    Article  Google Scholar 

  • J Akai K Izumi H Fukuhara H Masuda S Nakano T Yoshimura H Ohfuji HM Anawar K. Akai (2004) ArticleTitleMineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh Appl Geochem 19 215–230 Occurrence Handle10.1016/j.apgeochem.2003.09.008

    Article  Google Scholar 

  • JD Ayotte DL Montgomery SM Flanagan KW. Robinson (2003) ArticleTitleArsenic in groundwater in eastern New England: occurrence, controls, and human health implications Environ Sci Technol 37 2075–2083 Occurrence Handle10.1021/es026211g

    Article  Google Scholar 

  • DK Bhumbla RF. Keefer (1994) Arsenic mobilization and bioavailability in soils JO Nriagu (Eds) Arsenic in the Environment Wiley New York 51–82

    Google Scholar 

  • RJ Bowell NH Morley VK. Din (1994) ArticleTitleArsenic speciation in soil porewaters from the Ashanti Mine, Ghana Appl Geochem 9 15–22 Occurrence Handle10.1016/0883-2927(94)90048-5

    Article  Google Scholar 

  • DA Brown DC Kamineni JA Sawicki TJ. Beveridge (1994) ArticleTitleMinerals associated with biofilms occurring on exposed rock in a granitic Underground Research Laboratory Appl Environ Microbiol 60 3182–3191

    Google Scholar 

  • Buchman MF. 1999 NOAA Screening Quick Reference Tables. NOAA HAZMAT Report 99-1, Seattle, WA, National Oceanic and Atmospheric Administration, U.S.A.12 pp.

  • AD Chatterjee D Das BK Mandal TR Chowdhury G Samanta D. Chakraborty (1995) ArticleTitleArsenic in groundwater in 6 districts of West Bengal, India – the biggest arsenic calamity in the world. A. Arsenic species in drinking water and urine of the affected people Analyst 120 643–650 Occurrence Handle10.1039/an9952000643

    Article  Google Scholar 

  • JA Cherry AU Shaikh DE Tallman RV. Nicholson (1979) ArticleTitleArsenic species as an indicator of redox conditions in groundwater J Hydrol 43 373–392 Occurrence Handle10.1016/0022-1694(79)90182-3

    Article  Google Scholar 

  • TR Chowdhury GK Basu BK Mandal BK Biswas G Samanta UK Chowdhury CR Chanda D Lodh SL Roy KC Saha S Roy S Kabir Q Quamruzzaman D. Chakraborti (1999) ArticleTitleArsenic poisoning in the Ganges delta Nature 401 545–546

    Google Scholar 

  • JW Costerton Z Lewandowski D DeBeer D Caldwell D Korber G. James (1994) ArticleTitleBiofilms, the customized microniche J Bacteriol 176 2137–2142

    Google Scholar 

  • R Dhar BK Biswas G Samanta BKDC Mandal S Roy A Jafar A Islam G Ara S Kabir AW Khan SA Ahmed SA. Hadi (1997) ArticleTitleGroundwater arsenic calamity in Bangladesh Curr Sci 73 48–59

    Google Scholar 

  • R Donahue MJ. Hendry (2003) ArticleTitleGeochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada Appl Geochem 18 1733–1750 Occurrence Handle10.1016/S0883-2927(03)00106-9

    Article  Google Scholar 

  • KJ Edwards TM Gihring JF. Banfield (1999) ArticleTitleSeasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment Appl Environ Microbiol 65 3627–3632

    Google Scholar 

  • Environment Canada: http://www.ccme.ca/assets/pdf/e1_06.pdf (accessed in September, 2004)

  • TM Gihring GK Druschel RB McCleskey RJ Hamers JF. Banfield (2001) ArticleTitleRapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations Environ Sci Technol 35 3857–3862 Occurrence Handle10.1021/es010816f

    Article  Google Scholar 

  • J Gulens DR. Champ (1979) Influence of redox environments on the mobility of arsenic in groundwater EA Jenne (Eds) Chemical Modelling in Aqueous Systems ACS Press Washington, DC 81–95

    Google Scholar 

  • CF Harvey CH Swartz ABM Badruzzaman N Keon-Blute W Yu MA Ali J Jay R Beckie V Nieden D Brabander PM Oates KN Ashfaque S Islam HF Hemond MF. Ahmed (2002) ArticleTitleArsenic mobility and groundwater extraction in Bangladesh Science 298 1602–1606 Occurrence Handle10.1126/science.1076978

    Article  Google Scholar 

  • IRIS (Integrated Risk Information System): http://www.epa.gov/iris/ (accessed in May 2004)

  • A Jain RH. Loeppert (2000) ArticleTitleEffect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite J Environ Quality 29 1422–1430 Occurrence Handle10.2134/jeq2000.2951422x

    Article  Google Scholar 

  • G Ji S. Silver (1995) ArticleTitleBacterial resistance mechanisms for heavy metals of environmental concern J Ind Microbiol 14 61–75 Occurrence Handle10.1007/BF01569887

    Article  Google Scholar 

  • I Ko S-W Lee J-Y Kim K-W Kim J-S Lee H-T Chon MC. Jung (2003) ArticleTitlePotential impact of arsenic and heavy metals in the vicinity of the closed Au-Ag mining areas and its remediation priority J Korean Soc Geosystem Eng 40 367–378

    Google Scholar 

  • S Langley TJ. Beveridge (1999) ArticleTitleMetal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm Can J Microbiol 45 616–622 Occurrence Handle10.1139/cjm-45-7-616

    Article  Google Scholar 

  • XC Le S Yalcin M. Ma (2000) ArticleTitleSpeciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection Environ Sci Technol 34 2342–2347 Occurrence Handle10.1021/es991203u

    Article  Google Scholar 

  • J-U Lee JB. Fein (2000) ArticleTitleExperimental study of the effects of Bacillus subtilis on gibbsite dissolution rates under near-neutral pH and nutrient-poor conditions Chem Geol 166 193–202 Occurrence Handle10.1016/S0009-2541(99)00191-6

    Article  Google Scholar 

  • DR. Lovley (1993) ArticleTitleDissimilatory metal reduction Annu Rev Microbiol 47 263–290 Occurrence Handle10.1146/annurev.mi.47.100193.001403

    Article  Google Scholar 

  • JM McArthur P Ravencroft S Safiullah MF. Thirlwall (2001) ArticleTitleArsenic in groundwater: testing pollution mechanism for sedimentary aquifers in Bangladesh Water Resour Res 37 109–117 Occurrence Handle10.1029/2000WR900270

    Article  Google Scholar 

  • WM Mok CM. Wai (1994) Mobilization of arsenic in contaminated river waters JO Nriagu (Eds) Arsenic in the Environment Wiley New York 99–117

    Google Scholar 

  • DK Newman D Ahmann FMM. Morel (1998) ArticleTitleA brief review of microbial arsenate respiration Geomicrobiol J 15 255–268 Occurrence Handle10.1080/01490459809378082

    Article  Google Scholar 

  • RT Nickson J McArthur W Burgess K Ahmed P Ravenscroft M. Rahmann (1998) ArticleTitleArsenic poisoning of Bangladesh groundwater Nature 395 338 Occurrence Handle10.1038/26387

    Article  Google Scholar 

  • RS Oremland JF. Stolz (2003) ArticleTitleThe ecology of arsenic Science 300 939–944 Occurrence Handle10.1126/science.1081903

    Article  Google Scholar 

  • BP Rosen S Silver TB Gladysheva G Ji KL Oden S Jagannathan W Shi Y Chen J. Wu (1994) The arsenite oxyanion-translocating ATPase: bioenergetics, functions, and regulation A Torriani-Gorini E Yagil S Silver (Eds) Phosphate in Microorganisms ASM Press Washington, DC 97–107

    Google Scholar 

  • M Ruokolainen M Pantsar-Kallio A Haapa T. Kairesalo (2000) ArticleTitleLeaching, runoff and speciation of arsenic in a laboratory mesocosm Sci Tot Environ 258 139–147 Occurrence Handle10.1016/S0048-9697(00)00521-0

    Article  Google Scholar 

  • LL Stillings JI Drever SL Brantley Y Sun R. Oxburgh (1996) ArticleTitleRates of feldspar dissolution at pH 3–7 with 0–8 mM oxalic acid Chem Geol 132 79–90 Occurrence Handle10.1016/S0009-2541(96)00043-5

    Article  Google Scholar 

  • Stollenwerk KG. 2003 Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Welch AH, Stollenwerk KG, eds. Arsenic in Groundwater. Boston: Kluwer Academic Publishers, pp. 67–100.

  • WJ Ullman DL Kirchman SA Welch PV. Vandevivere (1996) ArticleTitleLaboratory evidence for microbially mediated silicate mineral dissolution in nature Chem Geol 132 11–17 Occurrence Handle10.1016/S0009-2541(96)00036-8

    Article  Google Scholar 

  • US EPA: http://www.epa.gov/waterscience/cs/vol1/appdx_d.pdf (accessed in September, 2004)

  • PV Vandevivere SA Welch WJ Ullman DL. Kirchman (1994) ArticleTitleEnhanced dissolution of silicate minerals by bacteria at near-neutral pH Microb Ecol 27 241–251 Occurrence Handle10.1007/BF00182408

    Article  Google Scholar 

  • SA Welch WJ. Ullman (1993) ArticleTitleThe effect of organic acids on plagioclase dissolution rates and stoichiometry Geochim Cosmochim Acta 57 2725–2736 Occurrence Handle10.1016/0016-7037(93)90386-B

    Article  Google Scholar 

  • SA Welch P. Vandevivere (1994) ArticleTitleEffect of microbial and other naturally occurring polymers on mineral dissolution Geomicrobiol J 12 227–238

    Google Scholar 

  • JW Williams S. Silver (1984) ArticleTitleBacterial resistance and detoxification of heavy metals Enz Microb Technol 6 530–537 Occurrence Handle10.1016/0141-0229(84)90081-4

    Article  Google Scholar 

  • EA Woolson JH Axley PC. Hearney (1973) ArticleTitleThe chemistry and phytotoxicity of arsenic in soils: II. Effects of time and phosphorous Soil Sci Soc Am Proc 37 254–259 Occurrence Handle10.2136/sssaj1973.03615995003700020028x

    Article  Google Scholar 

  • Y Zheng M Stute AV Geen I Gavrieli R Dhar HJ Simpson P Schlosser KM. Ahmed (2004) ArticleTitleRedox control of arsenic mobilization in Bangladesh groundwater Appl Geochem 19 201–214 Occurrence Handle10.1016/j.apgeochem.2003.09.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Un Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JU., Lee, SW., Kim, KW. et al. The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ Geochem Health 27, 159–168 (2005). https://doi.org/10.1007/s10653-005-0133-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-005-0133-4

Keywords

Navigation