Skip to main content
Log in

Measurements of sediment pickup rate over dune-covered bed

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Laboratory experiments were conducted to measure sediment pickup rate over two-dimensional fixed dunes. Measurements were performed over both stoss and lee sides of the dune with sediments of D 50 = 0.23, 0.44 and 0.86 mm. Flow velocity and turbulence were also measured by using an acoustic Doppler velocimeter. By analysing the experimental data, an empirical sediment pickup function based on depth-averaged flow parameters was proposed to estimate the pickup rate over the dune.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Pickup observation area (m2)

a 1, a 2,…:

Constants

B :

Channel width (m)

D :

Sediment diameter (m)

D * :

Dimensionless particle diameter

E :

Sediment pickup rate (m/s)

E * :

Dimensionless pickup rate

Err :

Average of the relative error (%)

f :

Function

Fr * :

Densimetric Froude number (–)

g :

Gravitational acceleration (m/s2)

H :

Flow depth (m)

K :

Depth-averaged k (m2/s2)

K * :

Dimensionless depth-averaged turbulence kinetic energy K

k :

Turbulence kinetic energy (m2/s2)

k s :

Equivalent sand roughness (m)

k * :

Dimensionless maximum turbulence kinetic energy k max

n :

Coefficient

Q :

Flow discharge (m3/s)

S :

Bed slope

T :

Time period for pickup measurements (s)

U :

Depth-averaged u (m/s)

uvw :

Streamwise, spanwise and vertical velocity (m/s)

u * :

Shear velocity (m/s)

u *′:

Effective shear velocity (m/s)

V T :

Total volume of sediment (m3)

x :

Streamwise distance (m)

z :

Vertical distance from the bed (m)

α :

Dune lee side angle (°)

δ :

Dune height (m)

ɛ :

Sediment porosity

λ :

Dune wave length (m)

ν :

Kinematic viscosity (m2/s)

ρ :

Fluid density (kg/m3)

ρ s :

Sediment density (kg/m3)

σ g :

Geometric standard deviation \( \sigma_{g} = \sqrt {{{D_{84} } \mathord{\left/ {\vphantom {{D_{84} } {D_{16} }}} \right. \kern-0pt} {D_{16} }}} \)

τ :

Mean bed shear stress (N/m2)

τ * :

Shields parameter

τ *′:

Effective Shields parameter

τ *c :

Critical Shields number

τ xz :

Bed shear stress (N/m2)

Δ:

Specific submerged density

References

  1. Aguirre-Pe J, Olivero ML, Moncada AT (2003) Particle densimetric Froude number for estimating sediment transport. J Hydraul Eng 129(6):428–437. doi:10.1061/(asce)0733-9429

    Article  Google Scholar 

  2. Bennett SJ, Best JL (1995) Mean flow and turbulence structure over fixed, 2-dimensional dunes: implications for sediment transport and bedform stability. Sedimentology 42(3):491–513. doi:10.1111/j.1365-3091.1995.tb00386.x

    Article  Google Scholar 

  3. Bennett SJ, Best JL (1995) Mean flow and turbulence structure over fixed, 2-dimensional dunes: implications for sediment transport and bedform stability (Vol 42, pg 491, 1995). Sedimentology 42(5):830. doi:10.1111/j.1365-3091.1995.tb00386.x

    Google Scholar 

  4. Best J (2005) The fluid dynamics of river dunes: a review and some future research directions. J Geophys Res Earth Surf. doi:10.1029/2004JF000218

    Google Scholar 

  5. Bridge JS, Best JL (1988) Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: implications for the formation of laminae. Sedimentology 35(5):753–763. doi:10.1111/j.1365-3091.1988.tb01249.x

    Article  Google Scholar 

  6. Cao ZX (1997) Turbulent bursting-based sediment entrainment function. J Hydraul Eng 123(3):233–236. doi:10.1061/(asce)0733-9429

    Article  Google Scholar 

  7. Cheng NS (2011) Application of incomplete self-similarity argument for predicting bed-material load discharge. J Hydraul Eng 137(9):921–931. doi:10.1061/(ASCE)HY.1943-7900.0000375

    Article  Google Scholar 

  8. Cheng NS, Emadzadeh A (2014) Average velocity of solitary coarse grain in flows over smooth and rough beds. J Hydraul Eng 140(6):04014015. doi:10.1061/(ASCE)HY.1943-7900.0000875

    Article  Google Scholar 

  9. Chien N, Wan Z (1999) Mechanics of sediment transport. ASCE Press, Reston

    Book  Google Scholar 

  10. Chiew YM, Lim S (1996) Local scour by a deeply submerged horizontal circular jet. J Hydraul Eng 122(9):529–532. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  11. Damgaard JS, Whitehouse RJS, Soulsby RL (1997) Bed-load sediment transport on steep longitudinal slopes. J Hydraul Eng 123(12):1130–1138. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  12. Dey S, Debnath K (2001) Sediment pickup on streamwise sloping beds. J Irrig Drain Eng 127(1):39–43. doi:10.1061/(ASCE)0733-9437

    Article  Google Scholar 

  13. Einstein HA (1950) The bed-load function for sediment transportation in open channel flows. In: Tech Bull 1026, Soil Conserv Serv, US Dep Agric, Washington, DC Tech. Bull, p 1026

  14. Emadzadeh A (2014) Experimental investigation of turbulence effects on sediment pickup rate in open channel flows. Nanyang Technological University, Singapore. http://hdl.handle.net/10356/61013

  15. Finelli CM, Hart DD, Fonseca DM (1999) Evaluating the spatial resolution of an acoustic Doppler velocimeter and the consequences for measuring near-bed flows. Limnol Oceanogr 44(7):1793–1801. doi:10.4319/lo.1999.44.7.1793

    Article  Google Scholar 

  16. Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30(04):741–773. doi:10.1017/S0022112067001740

    Article  Google Scholar 

  17. LeFeuvre AR, Altinbilek HD, Carstens MR (1970) Sediment-pickup function. J Hydraul Div 96(10):2051–2063

    Google Scholar 

  18. McLean SR, Nelson JM, Wolfe SR (1994) Turbulence structure over 2-dimensional bed forms: implications for sediment transport. J Geophys Res Oceans 99(C6):12729–12747. doi:10.1029/94JC00571

    Article  Google Scholar 

  19. McLean SR, Wolfe SR, Nelson JM (1999) Predicting boundary shear stress and sediment transport over bed forms. J Hydraul Eng 125(7):725–736. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  20. Meyer-Peter E, Muller R (1948) Formulas for bed-load transport. In: Proceedings of the 2nd meeting Stockholm, Sweden, Int. assoc. hydraulic structures res., pp 39–64

  21. Miwa H, Daido A (2006) Step length formula of bed-load sediment and its application to dune-bed. In: The 7th int. conf. on hydroscience and engineering (ICHE-2006), Philadelphia

  22. Miwa H, Daido A, Kato I (2000) Sediment pick-up rate formula and its application to dune-beds. In: Proceedings of the 4th international conference on hydro-science and-engineering

  23. Mohtar W, Munro RJ (2013) Threshold criteria for incipient sediment motion on an inclined bedform in the presence of oscillating-grid turbulence. Phys Fluids. doi:10.1063/1.4774341

    Google Scholar 

  24. Nakagawa H, Tsujimoto T (1980) Sand bed instability due to bed load motion. J Hydraul Div 106(12):2029–2051

    Google Scholar 

  25. Naqshband S, Ribberink JS, Hulscher SJMH (2014) Using both free surface effect and sediment transport mode parameters in defining the morphology of river dunes and their evolution to upper stage plane beds. J Hydraul Eng 140(6):06014010. doi:10.1061/(ASCE)HY.1943-7900.0000873

    Article  Google Scholar 

  26. Naqshband S, Ribberink JS, Hurther D, Hulscher SJMH (2014) Bed load and suspended load contributions to migrating sand dunes in equilibrium. J Geophys Res Earth Surf. doi:10.1002/2013JF003043

    Google Scholar 

  27. Nelson JM, McLean SR, Wolfe SR (1993) Mean flow and turbulence fields over 2-dimensional bed forms. Water Resour Res 29(12):3935–3953. doi:10.1029/93WR01932

    Article  Google Scholar 

  28. Nelson JM, Shreve RL, McLean SR, Drake TG (1995) Role of near-bed turbulence structure in bed-load transport and bed form mechanics. Water Resour Res 31(8):2071–2086. doi:10.1029/95wr00976

    Article  Google Scholar 

  29. Nelson JM, Smith JD (1989) Mechanics of flow over ripples and dunes. J Geophys Res Oceans 94(C6):8146–8162. doi:10.1029/JC094iC06p08146

    Article  Google Scholar 

  30. Nielsen P (1992) Coastal bottom boundary layers and sediment transport. World Scientific, Singapore

    Google Scholar 

  31. Oliveto G, Hager WH (2005) Further results to time-dependent local scour at bridge elements. J Hydraul Eng 131(2):97–105. doi:10.1061/(asce)0733-9429

    Article  Google Scholar 

  32. Rajaratnam N (1981) Erosion by plane turbulent jets. J Hydraul Res V. doi:10.1080/00221688109499508

    Google Scholar 

  33. Raudkivi AJ (1966) Bed forms in alluvial channels. J Fluid Mech 26(3):507–514. doi:10.1017/S0022112066001356

    Article  Google Scholar 

  34. Sekine M, Kikkawa H (1992) Mechanics of saltating grains II. J Hydraul Eng 118(4):536–558. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  35. Sleath JFA, Wallbridge S (2002) Pickup from rippled beds in oscillatory flow. J Waterw Port Coast Ocean Eng 128(6):228–237. doi:10.1061/(asce)0733-950x

    Article  Google Scholar 

  36. Sontek (1997) Sontek ADV operation manual. Firmware Version 4.0. Sontek, San Diego

  37. Strom KB, Papanicolaou AN (2007) ADV measurements around a cluster microform in a shallow mountain stream. J Hydraul Eng 133(12):1379–1389. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  38. van Rijn LC (1982) Equivalent roughness of alluvial bed. J Hydraul Div 118(12):1215–1218

    Google Scholar 

  39. van Rijn LC (1984) Sediment pick-up functions. J Hydraul Eng 110(10):1494–1502. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  40. van Rijn LC (1984) Sediment transport, part I: bed load transport. J Hydraul Eng 110(10):1431–1456. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  41. van Rijn LC (1984) Sediment transport, part II: suspended load transport. J Hydraul Eng 110(11):1613–1641. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  42. van Rijn LC (1986) Application of sediment pick-up function. J Hydraul Eng 112(9):867–874. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  43. Venditti JG, Bennett SJ (2000) Spectral analysis of turbulent flow and suspended sediment transport over fixed dunes. J Geophys Res Oceans 105(C9):22035–22047. doi:10.1029/2000JC900094

    Article  Google Scholar 

  44. Wahl T (2000) Analyzing ADV data using WinADV. In: Paper presented at the joint conference on water resource engineering and water resources planning and management, Minneapolis, Minnesota

  45. Wren DG, Kuhnle RA (2008) Measurements of coupled fluid and sediment motion over mobile sand dunes in a laboratory flume. Int J Sediment Res 23(4):329–337. doi:10.1016/S1001-6279(09)60004-4

    Article  Google Scholar 

  46. Zedler EA, Street RL (2001) Large-eddy simulation of sediment transport: currents over ripples. J Hydraul Eng 127(6):444–452. doi:10.1061/(asce)0733-9429

    Article  Google Scholar 

  47. Zhong DY, Wang GQ, Ding Y (2011) Bed sediment entrainment function based on kinetic theory. J Hydraul Eng 137(2):222–233. doi:10.1061/(asce)hy.1943-7900.0000299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Emadzadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emadzadeh, A., Cheng, NS. Measurements of sediment pickup rate over dune-covered bed. Environ Fluid Mech 16, 123–144 (2016). https://doi.org/10.1007/s10652-015-9416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-015-9416-1

Keywords

Navigation