Skip to main content

Advertisement

Log in

Bivariate geostatistical modelling: a review and an application to spatial variation in radon concentrations

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

We present a comprehensive review of multivariate geostatistical models, focusing on the bivariate case. We compare in detail three approaches, the linear model of coregionalisation, the common component model and the kernel convolution approach, and discuss similarities between them. We demonstrate the merits of the common component class of models as a flexible means for modelling bivariate geostatistical data of the type that frequently arises in environmental applications. In particular, we show how kernel convolution can be used to approximate the common component model, and demonstrate the method using a data-set of calcium and magnesium concentrations in soil samples. We then apply the model to a study of domestic radon concentrations in the city of Winnipeg, Canada, in which exposure was measured at two sites (bedroom and basement) in each residential location. Our analysis demonstrates that in this study the correlation between the two sites within each house dominates the short-range spatial correlation typical of the distribution of radon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee S, Gelfand A, Finley A, Sang H (2008) Gaussian predictive process models for large spatial data sets. J Roy Stat Soc B 70: 825–848

    Article  Google Scholar 

  • Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water Resour Res 42: w11416. doi:10.1029/2005WR004754

    Article  Google Scholar 

  • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44:w07412. doi:10.1029/2007WR006115

  • Barry R, Ver Hoef J (1996) Blackbox kriging: spatial prediction without specifying variogram models. J Agric Biol Environ Stat 1: 297–322

    Article  Google Scholar 

  • Berliner L (2000) Hierarchical Bayesian modeling in the environmental sciences. Allgemeines Statistische Archiv 84: 141–153

    Article  Google Scholar 

  • Boyle P, Frean M (2005) Multiple output Gaussian process regression. Tech. rep., School of Mathematical and Computing Sciences, Victoria University of Wellington

  • Brabec M, Jílek K (2009) Dynamical model for indoor radon concentration monitoring. Environmetrics 20: 718–729

    Article  CAS  Google Scholar 

  • Calder C (2007) Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment. Environ Ecol Stat 14: 229–247

    Article  CAS  Google Scholar 

  • Calder C (2008) A dynamic process convolution approach to modeling ambient particulate matter concentrations. Environmetrics 19: 39–48

    Article  CAS  Google Scholar 

  • Calder C, Cressie N (2007) Some topics in convolution-based spatial modeling. In: Proceedings of the 56th session of the international statistics institute, Lisbon, Portugal

  • Calder C, Craigmile P, Zhang J (2009) Regional spatial modelling of topsoil geochemistry. Biometrics 65: 206–215

    Article  PubMed  CAS  Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Cressie N, Wikle C (1998) The variance-based cross-variogram: you can add apples and oranges. Math Geol 30: 789–799

    Article  Google Scholar 

  • D’Agostino V, Greene E, Passarella G, Vurro M (1993) Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization. Environ Geol 36: 285–295

    Article  Google Scholar 

  • Diggle P, Ribeiro Jr P (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • Frees E, Valdez E (1998) Understanding relationships using copulas. North Am Actuar J 2: 1–25

    Google Scholar 

  • Fuentes M (2001) A high frequency kriging approach for nonstationary environmental processes. Environmetrics 12: 469–483

    Article  CAS  Google Scholar 

  • Fuentes M (2002) Interpolation of nonstationary air pollution processes: a spatial spectral approach. Stat Modell 2: 281–298

    Article  Google Scholar 

  • Fuentes M (2002) Spectral methods for nonstationary spatial processes. Biometrika 89: 197–210

    Article  Google Scholar 

  • Gelfand A, Schmidt A, Sirmans C (2003) Multivariate spatial process models: conditional and unconditional Bayesian approaches using coregionalization. Tech. rep., Institute of Statistics and Decision Sciences, Duke University

  • Goovaerts P (1994) On a controversial method for modeling a coregionalization. Math Geol 26: 197–204

    Article  Google Scholar 

  • Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Math Geol 24: 269–286

    Article  Google Scholar 

  • Haas T (1996) Multivariate spatial prediction in the presence of non-linear trend and covariance non-stationarity. Environmetrics 7: 145–165

    Article  Google Scholar 

  • Higdon D (1998) A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ Ecol Stat 5: 173–190

    Article  Google Scholar 

  • Higdon D (2002) Space and space-time modeling using process convolutions. In: Anderson C, Barnett V, Chatwin P, El-Shaarawi A (eds) Quantitative methods for current environmental issues. Springer, New York, pp 37–56

    Chapter  Google Scholar 

  • Hunter N, Muirhead C, Miles J, Appleton J (2009) Uncertainties in radon related to house-specific factors and proximity to geological boundaries in England. Radiat Prot Dosim 136: 17–22

    Article  CAS  Google Scholar 

  • Jenkins G, Watts D (1968) Spectral analysis and its applications. Holden-Day, San Francisco

    Google Scholar 

  • Kern J (2000) Bayesian process-convolution approaches to specifying spatial dependence structure. PhD thesis, Duke University

  • Knorr-Held L, Best N (2001) A shared component model for detecting joint and selective clustering of two diseases. J Roy Stat Soc A 164: 73–85

    Article  Google Scholar 

  • Krewski D, Lubin J, Zielinski J, Alavanja M, Catalan V, Field R, Klotz J, Létourneau E, Lynch C, Lyon J, Sandler D, Schoenberg J, Steck D, Stolwijk J, Weinberg C, Wilcox H (2006) A combined analysis of North American case-control studies of residential radon and lung cancer. J Toxicol Environ Health Part A Curr Issues 69: 533–597

    Article  CAS  Google Scholar 

  • Lark R (2002) Robust estimation of the pseudo cross-variogram for cokriging soil properties. Eur J Soil Sci 53: 253–270

    Article  Google Scholar 

  • Lark R (2003) Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties. Eur J Soil Sci 54: 187–201

    Article  Google Scholar 

  • Lee H, Higdon D, Calder C, Holloman C (2005) Efficient models for correlated data via convolutions of intrinsic processes. Stat Model 5: 53–74

    Article  Google Scholar 

  • Létourneau E, Zielinski J, Krewski D, McGregor R (1992) Levels of radon gas in Winnipeg homes. Radiat Prot Dosim 45: 531–534

    Google Scholar 

  • Létourneau E, Krewski D, Choi N, Goddard M, McGregor R, Zielinski J, Du J (1994) Case-control study of residential radon and lung cancer in Winnipeg, Manitoba, Canada. Am J Epidemiol 140: 310–322

    PubMed  Google Scholar 

  • Li B, Genton M, Sherman M (2008) Testing the covariance structure of multivariate random fields. Biometrika 95: 813–829

    Article  Google Scholar 

  • Majumdar A, Gelfand A (2007) Multivariate spatial modeling for geostatistical data using convolved covariance functions. Math Geol 39: 225–245

    Article  CAS  Google Scholar 

  • Majumdar A, Paul D, Bautista D (2007) A generalized convolution model for multivariate nonstationary spatial processes. Tech. rep., Department of Mathematics and Statistics, Arizona State University

  • Marchant B, Lark R (2007) Estimation of linear models of coregionalization by residual maximum likelihood. Eur J Soil Sci 58: 1506–1513

    Article  Google Scholar 

  • Mardia K, Goodall C (1993) Spatial-temporal analysis of multivariate environmental monitoring data. In: Patil G, Rao C (eds) Multivariate environmental statistics. North-Holland, Amsterdam, pp 347–386

    Google Scholar 

  • Nychka D, Saltzman N (1998) Design of air-quality monitoring networks. In: Nychka D, Piegorsch W, Cox L (eds) Case studies in Environmental Statistics. Springer, New York, Chap 4, pp 51–76

  • Oliver D (2003) Gaussian cosimulation: modelling of the cross-covariance. Math Geol 35: 681–698

    Article  Google Scholar 

  • Priestley M (1981) Spectral analysis and time series. Academic Press, New York

    Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org, ISBN 3-900051-07-0

  • Ribeiro Jr P, Diggle P (2001) geoR: a package for geostatistical analysis. R-NEWS 1(2):14–18, URL http://CRAN.R-project.org/doc/Rnews/, ISSN 1609-3631

  • Rodrigues A, Diggle P (2010) A class of convolution-based models for spatio-temporal processes with non-separable covariance structure. Scand J Stat 37: 553–567

    Article  Google Scholar 

  • Royle J, Berliner L (1999) A hierarchical approach to multivariate spatial modeling and prediction. J Agric Biol and Environ Stat 4: 29–56

    Article  Google Scholar 

  • Rue H, Tjelmeland H (2002) Fitting Gaussian Markov random fields to Gaussian fields. Scand J Stat 29: 31–49

    Article  Google Scholar 

  • Schmidt A, Gelfand A (2003) A Bayesian coregionalization approach for multivariate pollution data. J Geophy Res Atmos 108(D24): 8783

    Article  Google Scholar 

  • Steck D, Field R, Lynch C (1999) Exposure to atmospheric radon. Environ Heal Perspect 107: 123–127

    Article  CAS  Google Scholar 

  • Stroud J, Müller P, Sansó B (2001) Dynamic models for spatiotemporal data. J Roy Stat Soc B 63: 673–689

    Article  Google Scholar 

  • Ver Hoef J, Barry R (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plan Inference 69: 275–294

    Article  Google Scholar 

  • Ver Hoef J, Cressie N (1993) Multivariable spatial prediction. Math Geol 25: 219–240

    Article  Google Scholar 

  • Ver Hoef J, Cressie N, Barry R (2004) Flexible spatial models for kriging and cokriging using moving averages and the fast fourier transform (fft). J Comput Graph Stat 13: 265–282

    Article  Google Scholar 

  • Wackernagel H (1995) Multivariate geostatistics. Springer, Berlin

    Google Scholar 

  • Whitley E, Darby S (1999) Quantifying the risks from residential radon. In: Barnett V, Stein A, Feridun Turkman K (eds) Statistical aspects of health and the environment. Wiley, Chichester, chap 5, pp 73–89

  • Xia G, Gelfand A (2005) Stationary process approximation for the analysis of large spatial datasets. Tech. rep., Institute of Statistics and Decision Sciences, Duke University

  • Yaglom A (2004) An introduction to the theory of stationary random functions. Dover, Mineola

    Google Scholar 

  • Zhang H (2004) Inconsistent estimation and asymptopically equal interpolations in model-based geostatistics. J Am Stat Assoc 99: 250–261

    Article  Google Scholar 

  • Zhang H (2007) Maximum-likelihood estimation for multivariate spatial linear coregionalization models. Environmetrics 18: 125–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Fanshawe.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (JPEG 21 kb)

ESM 2 (JPEG 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanshawe, T.R., Diggle, P.J. Bivariate geostatistical modelling: a review and an application to spatial variation in radon concentrations. Environ Ecol Stat 19, 139–160 (2012). https://doi.org/10.1007/s10651-011-0179-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-011-0179-7

Keywords

Navigation