Skip to main content

Advertisement

Log in

Covariation between variables in a modelling process: The ACODESA (collaborative learning, scientific debate and self-reflection) method

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

Semiotic representations have been an important topic of study in mathematics education. Previous research implicitly placed more importance on the development of institutional representations of mathematical concepts in students rather than other types of representations. In the context of an extensive research project, in progress since 2005, related to modelling mathematical situations in Québec secondary schools (grades 8 and 9), we have addressed the problem of constructing a specific mathematical concept: covariation between variables as a prerequisite for the concept of function and its graphical representation. However, our research differs from previous studies as we attempt to take into consideration, in a cultural semiotic perspective, the spontaneous non-institutional representations that students produce when solving a problem situation in mathematics. We report our results with a group of students in grade 9, discussing the evolution of the representations the students produced to solve a problem situation, and the key role that the concept of covariation seems to play in helping students grasp the graphical representation of functions. We also discuss the different stages of the teaching method used, based upon collaborative learning, scientific debate and self-reflection (the ACODESA method of teaching) which aims to help the students acquire a cultural semiotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Some of these activities were inspired by preliminary versions constructed in an undergraduate course by C. Janvier, B. Janvier and L. Charbonneau: Didactique de la variable et des fonctions, at Université du Québec à Montréal. Passaro added some modifications in her Masters’ study of the activity The hiker (see Passaro, 2009).

References

  • Alibert, D., & Thomas, M. (1991). Research on mathematical proof. In D. Tall (Ed.), Advanced mathematical thinking (pp. 215–230). Dordrecht, The Netherlands: Kluwer Academic Publishers.

  • Artigue, M. (2002). L’intégration de calculatrices symboliques à l’enseignement secondaire: Les leçons de quelques ingénieries didactiques [The integration of symbolic calculators in secondary education: some lessons on didactic engineering]. In D. Guin & L. Trouche (Eds.), Calculatrices symboliques. Transformer un outil en un instrument du travail mathématique : un problème didactique (pp. 277–349). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Bartolini Bussi, M. G. (2010). Historical artefacts, semiotic mediation, and teaching proof. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives (pp. 151–168). New York: Springer.

    Chapter  Google Scholar 

  • Bloch, I. (2003). Teaching functions in a graphic milieu: What forms of knowledge enable students to conjecture and prove? Educational Studies in Mathematics, 52, 8–28.

    Article  Google Scholar 

  • Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23, 247–285.

    Article  Google Scholar 

  • Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. Research in Collegiate Mathematics Education, 7, 114–162.

    Google Scholar 

  • Carlson, M. (2002). Physical enactment: A powerful representational tool for understanding the nature of covarying relationships. In F. Hitt (Ed.), Representations and mathematics visualization (pp. 63–77), Special issue of PME-NA and Cinvestav-IPN. Mexico.

  • Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept assessment: A tool for assessing students’ reasoning abilities and understanding. Cognition and Instruction, 28(2), 113–145.

    Article  Google Scholar 

  • Clement, J. (1989). The concept of variation and misconceptions in cartesian graphing. Focus on Learning Problems in Mathematics, 11(1–2), 77–87.

    Google Scholar 

  • Davidson, N. (1998). L’apprentissage coopératif et en collaboration. Une tentative d’unification [Cooperative learning and collaboration. A unifying attempt]. In J. Thousand, R. Villa, & A. Nevin (Eds.), La créativité et l’apprentissage coopératif (pp. 63–101). Québec: Les Éditions Logiques.

  • diSessa, A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: Meta-representational expertise in children. Journal of Mathematical Behavior, 10, 117–160.

    Google Scholar 

  • Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée [Registers of semiotic representation and cognitive functioning of thought]. Annales de Didactique et de Sciences Cognitives, 5, 37–65.

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine: Registres sémiotiques et apprentissage intellectuels[Semiosis and human thought: semiotic registers and intellectual learning]. Bern, Switzerland: Peter Lang.

  • Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit.

    Google Scholar 

  • Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. Engeström, R. Miettinen & R.-L. Punamäki (Eds.), Perspectives on activity theory (pp. 19–38). New York, NY: Cambridge University Press.

  • Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317–333.

    Article  Google Scholar 

  • Font, V., Bolite, J., & Acevedo, J. (2010). Metaphors in mathematics classrooms: Analysing the dynamic process of teaching and learning of graph functions. Educational Studies in Mathematics, 75, 131–152.

  • Glaeser, G. (1999). Une introduction à la didactique expérimentale des mathématiques [An introduction to experimental mathematics education]. France: La Pensée Sauvage Éditions.

  • González-Martín, A.S., Hitt, F., & Morasse, C. (2008). The introduction of the graphic representation of functions through the concept of covariation and spontaneous representations. A case study. In O. Figueras & A. Sepúlveda (Eds.). Proceedings of the 32nd conference of the International Group for the Psychology of Mathematics Education and the 30th PME-NA (Vol. 3, pp. 89–97). Morelia Mexico: PME.

  • Hadamard, J. (1945/1975). Essai sur la psychologie de l’invention dans le domaine mathématique [Essay on the psychology of invention in the mathematical field]. Paris: Gauthier-Villars.

  • Harel, G., & Dubinsky, E. (Eds.). (1992). The concept of function: Aspects of epistemology and pedagogy. Washington: MAA Notes. 25.

    Google Scholar 

  • Hitt, F. (1994). Teachers’ difficulties with the construction of continuous and discontinuous functions. Focus on Learning Problems in Mathematics, 16(4), 10–20.

    Google Scholar 

  • Hitt, F. (2003). Le caractère fonctionnel des représentations [The functional nature of the representations]. Annales de Didactique et des Sciences Cognitives, 8, 255–271.

    Google Scholar 

  • Hitt, F. (2006). Students’ functional representations and conceptions in the construction of mathematical concepts. An example: The concept of limit. Annales de Didactique et des Sciences Cognitives, 11, 253–268.

    Google Scholar 

  • Hitt F. (2007). Utilisation de calculatrices symboliques dans le cadre d’une méthode d’apprentissage collaboratif, de débat scientifique et d’auto-réflexion [Use of CAS in a method of collaborative learning, scientific debate and self-reflection]. In M. Baron, D. Guin, & L. Trouche (Eds.), Environnements informatisés et ressources numériques pour l’apprentissage. Conception et usages, regards croisés (pp. 65–88). Éditorial Hermès.

  • Hitt, F., & Morasse, C. (2009). Développement du concept de covariation et de fonction en 3ème secondaire dans un contexte de modélisation mathématique et de résolution de situations problèmes [Developing the concept of covariation and function in 3rd year of secondary school in the context of mathematical modelling and problem solving situations]. Proceedings CIEAEM 61, Quaderni di Ricerca in Didattica (Matematica), Supplemento n. 2, 2009. http://math.unipa.it/~grim/cieaem/quaderno19_suppl_2.htm

  • Karsenty, R. (2003). What adults remember from their high school mathematics? The case of linear functions. Educational Studies in Mathematics, 51, 117–144.

    Article  Google Scholar 

  • Legrand, M. (2001). Scientific debate in mathematics courses. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 127–135). Dordrecht: Kluwer Academic Publishers.

  • Leontiev, A. (1981). Sign and activity. In J. V. Wertsch (Ed.), The concept of activity theory in soviet psychology (pp. 241–255). New York: M.E. Sharpe.

    Google Scholar 

  • Mesa, V. (2004). Characterizing practices associated with functions in middle school textbooks: An empirical approach. Educational Studies in Mathematics, 56, 225–286.

    Article  Google Scholar 

  • Ministère de l’Éducation, du Loisir et du Sport (MELS) (2007). Programme de formation, deuxième cycle du secondaire [Training Program, Secondary Second Cycle]. http://www.mels.gouv.qc.ca/DGFJ/dp/menusec.htm

  • Monk, S. (1992). Students’ understanding of a function given by a physical model. In E. Dubinsky & G. Harel (Eds.), The concept of function. Aspects of epistemology and pedagogy (pp. 175–193). MAA Notes 25.

  • Nardi, B. A. (1997). Activity theory and human-computer interaction. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human-computer interaction (pp. 4–8). London: MIT Press.

    Google Scholar 

  • Passaro, V. (2009). Obstacles à l’acquisition du concept de covariation et l’introduction de la représentation graphique en deuxième secondaire [Obstacles to the acquisition of the concept of covariation and the introduction of graphing in 2nd year of secondary school]. Annales de Didactique et des Sciences Cognitives, 14, 61–77.

    Google Scholar 

  • Presmeg, N., & Balderas, P. (2002). Graduate students’ visualization in two rate of change problems. In F. Hitt (Ed.), Representations and mathematics visualization (pp. 47–61), Special issue of PME-NA and Cinvestav-IPN.

  • Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains [Men and technologies, cognitive approach to contemporary instruments]. Paris: Armand Colin.

  • Radford, L. (1998). On Culture and mind, a post-Vygotskian semiotic perspective, with an example from Greek mathematical thought. Paper presented at the 23rd annual meeting of the semiotic society of America, Victoria College, University of Toronto, October 15–18, 1998.

  • Schwartz, B., & Dreyfus, T. (1995). New actions upon old objects: A new ontological perspective on functions. Educational Studies in Mathematics, 29, 259–291.

    Article  Google Scholar 

  • Slavit, D. (1997). An alternate route to the reification of function. Educational Studies in Mathematics, 33, 259–281.

    Article  Google Scholar 

  • Slavit, D., & Yeidel, J. (1999). Using web-based material in large-scale precalculus instruction. International Journal of Computers for Mathematical Learning, 4, 27–50.

    Article  Google Scholar 

  • Thompson, P. (1994a). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229–274.

    Article  Google Scholar 

  • Thompson, P. (1994b). Students, functions, and the undergraduate mathematics curriculum. Research in Collegiate Mathematics Education, 1(4), 21–44.

    Google Scholar 

  • Thompson, P. (2002). Some remarks on conventions and representations. In F. Hitt (Ed.), Mathematics visualisation and representations (pp. 199–206). Mexico City: Psychology of Mathematics Education North American Chapter and Cinvestav-IPN.

    Google Scholar 

  • Trigueros, M., & Martínez-Planell, F. (2010). Geometrical representations in the learning of two-variable functions. Educational Studies in Mathematics, 73, 3–19.

    Article  Google Scholar 

  • Vygotsky, L. (1986). Thought and language. Cambridge: The MIT press.

    Google Scholar 

Download references

Acknowledgments

We thank the Conseil de Recherche en Sciences Humaines du Canada (No. 410-2008-1836, CID 130 252). We also express our gratitude to the students and to the teacher Christian Morasse who participated in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Hitt.

Additional information

This work has been funded by Conseil de Recherche en Sciences Humaines du Canada (No. 410-2008-1836, CID 130 252).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hitt, F., González-Martín, A.S. Covariation between variables in a modelling process: The ACODESA (collaborative learning, scientific debate and self-reflection) method. Educ Stud Math 88, 201–219 (2015). https://doi.org/10.1007/s10649-014-9578-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-014-9578-7

Keywords

Navigation