Skip to main content
Log in

Species diversity and seasonal dynamics of filamentous cyanobacteria in urban reservoirs for drinking water supply in tropical China

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Filamentous cyanobacteria have been observed to become the dominant species in reservoirs, especially in small reservoirs for drinking water supply in southern China. The occurrences of filamentous cyanobacteria blooms in such reservoirs add additional costs for water plants by decreasing the filtration efficiency and the potential of toxin production. To serve the purpose of drinking water supply, the effective risk assessment requires the dynamic pattern of filamentous cyanobacteria. This study seasonally collected samples from 25 reservoirs in Dongguan, one of the most important ‘world factories’ in China in July, December and March, and investigated the temporal dynamics of phytoplankton, particularly cyanobacteria community. Our investigation showed that filamentous cyanobacteria, Planktothrix sp, Limnothrix sp. and Cylindrospermopsis raciborskii dominated in these reservoirs and climate-related water temperature was the primary factor for the seasonal shift of filamentous cyanobacteria. High abundance of filamentous cyanobacteria occurred in the high water level period with increasing temperature but less relevant with nutrient conditions. Our study observed the seasonal dynamics of filamentous cyanobacteria in tropical urban reservoirs and highlighted the association between temperature and filamentous cyanobacteria. our data and analysis provided an evidence that increased temperature could increase the likelihood of frequency and intensity of filamentous cyanobacteria blooms. In the scenario of global warming, more frequent monitoring of filamentous cyanobacteria and the potential to produce toxin should be considered for water quality and reservoir management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A.P.H.A (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Water Works Association and Water Pollution Control Federation, Washington, DC

    Google Scholar 

  • Amaral V, Bonilla S, Aubriot L (2014) Growth optimization of the invasive cyanobacterium Cylindrospermopsis raciborskii in response to phosphate fluctuations. Eur J Phycol 49:134–141

    CAS  Google Scholar 

  • Aubriot L, Bonilla S (2012) Rapid regulation of phosphate uptake in freshwater cyanobacterial blooms. Aquat Microb Ecol 67:251–263

    Google Scholar 

  • Aubriot L, Bonilla S, Falkner G (2011) Adaptive phosphate uptake behavior of phytoplankton to environmental phosphate fluctuations. FEMS Microb Ecol 77:1–16

    CAS  Google Scholar 

  • Bonialla S, Aubriot L, Soares MCS, Gonzales-Piana M, Fabre A, Huszar VL, Lurling M, Antoniades D, Padiska J, Kruk C (2012) What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microb Ecol 79:594–607

    Google Scholar 

  • Briand JF, Robillot C, Quiblier-Llobéras C, Humbertd JF, Couté A, Bernard C (2002) Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res 36:3183–3192

    CAS  Google Scholar 

  • Briand JF, Leboulanger C, Humbert JF, Bernard C, Dufour P (2004) Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? J Phycol 40:231–238

    Google Scholar 

  • Catherine A, Troussellier M, Bernard C (2008) Design and application of stratified sampling strategy to study the regional distribution of cyanobacteria (lle-de-France, France). Water Res 42:4989–5001

    CAS  Google Scholar 

  • Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo SMFOE, Neilan BA (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53

    Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 466:1394–1407

    Google Scholar 

  • Chonudomkul D, Yongmanitchai W, Theeragool G, Kawachi M, Kasai F, Kaya K, Watanabe MM (2004) Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microb Ecol 48:345–355

    CAS  Google Scholar 

  • Chorus I (2012) Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries. Umweltbundesamt, Berlin

    Google Scholar 

  • Cloern JE (1987) Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont Shelf Res 7:1367–1381

    Google Scholar 

  • Codd GA, Morrison LF, Metcaf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    CAS  Google Scholar 

  • Crossetti LO, de M Bicudo C (2008) Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Gar Garças Reservoir, over 8 years. Hydrobiologia 614:91–105

    Google Scholar 

  • Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12

    CAS  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Falkowski PG, Oliver MJ (2007) Mix and match: how climate selects phytoplankton. Nat Rev Microbiol 5:813–819

    CAS  Google Scholar 

  • McGregorl GB, Fabbro LD (2000) Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management. Lakes Reserv: Res Manag 2000:195–205

    Google Scholar 

  • Gragnani A, Scheffer M, Rinaldi S (1999) Top-down control of cyanobacteria: a theoretical analysis. Am Nat 153:59–72

    Google Scholar 

  • Gu JD, Wang YS (2012) Environmental feedback: lessons from pollution problems in China. Ecotoxicology 21:1583–1584

    CAS  Google Scholar 

  • Han BP, Lin X, Lei LM, Gu JD (2012) Survival of Daphnia geleata in sub-tropical reservoirs: harmful effects of toxic cyanobacteria in food source. Ecotoxicology 21:1692–1705

    CAS  Google Scholar 

  • Han BP, Liu ZW (2012) Tropical and sub-tropical reservoir limnology in China: theory and practice. Springer, New York, NY

    Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Google Scholar 

  • Istvánovics V, Shafik HM, Presing M, Juhos S (2000) Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw Biol 43:257–275

    Google Scholar 

  • Kokocinski M, Stefaniak K, Mankiewicz-Boczek J, Izydorczyk K, Soininen J (2010) The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). Eur J Phycol 45:365–374

    CAS  Google Scholar 

  • Kruk C, Mazzeo N, Lacerot G, Reynolds CS (2002) Classification schemes of phytoplankton: selecting an ecological approach for the analysis of species temporal replacement. J Plankton Res 24:901–912

    Google Scholar 

  • Lazzaro X (1997) Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verh Int Ver Limnol 26:719–730

    Google Scholar 

  • Lei L, Peng L, Huang X, Han BP (2014) Occurrence and dominance of cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China. Environ Monit Assess 186:3079–3090

    CAS  Google Scholar 

  • Lin SJ, He LJ, Huang PS, Han BP (2005) Comparison and improvement on the extraction method for chlorophyll a in phytoplankton. Ecol Sci 24:9–11

    Google Scholar 

  • Litchman E (2010) Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett 13:1560–1572

    Google Scholar 

  • Lund JWG, Kipling C, le Cren ED (1958) The inverted microscope method of estimating algae numbers and statistical basis of estimation by counting. Hydrobiologia 11:143–170

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell science, Oxford, UK

    Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford

    Google Scholar 

  • Markensten H, Moore K, Persson I (2010) Simulated lake phytoplankton composition shifts towards cyanobacteria dominance in a future warmer climate. Ecol Appl 20:752–767

    Google Scholar 

  • Mehnert G, Leunert F, Cires S, Jöhnk K, Rücker J, Nixdorf B, Wiedner C (2010) Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. J Plankton Res 32:1009–1021

    CAS  Google Scholar 

  • Mehnert G, Rücker J, Nicklisch A, Leunert F, Wiedner C (2012) Effects of thermal acclimation and photoacclimation on lipophilic pigments in an invasive and a native cyanobacterium of temperate regions. Eur J Phycol 47:182–192

    CAS  Google Scholar 

  • Mur L, Skulberg O, Utkilen H (1999) Cyanobacteira in the environment. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to public health significance, consequences, monitoring and management. E&FN SPON, London, p 15–40

    Google Scholar 

  • Nicklisch A, Roloff B, Ratsch A (1991) Competition experiments with two planktic bluegreen algae (Oscillatoriaceae). Verh Int Ver Limnol 24:889–892

    Google Scholar 

  • Nixdorf B, Mischke U, Rücker J (2003) Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes - an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502:111–121

    Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R package version 2.4-2. https://CRAN.Rproject.org/package=vegan

  • Padisák J, Reynolds CS (1998) Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiolgia 384:41–53

    Google Scholar 

  • Padisák J (1997) Cylindrospermopsis raciborskii (Woloszyska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacerium: worldwide distribution and review of its ecology. Archiv für Hydrobiol 107:563–593. Supplement

    Google Scholar 

  • Padisák J (2003) Estimation of minimum sedimentary inoculum (akinete) pool of Cylindrospermopsis raciborskii: a morphology and life-cycle based method. Hydrobiologia 502:389–394

    Google Scholar 

  • Paerl HW, Huisman J (2008) Climate: Blooms like it hot. Science 320:57–58

    CAS  Google Scholar 

  • Pearl HW, Paul VJ (2012) Climate change: links to global expansion of harmful Cyanobacteria. Water Res 46:1349–1363

    Google Scholar 

  • Perga M-E, Domaizon I, Guillard J, Hamelet V, Anneville O (2013) Are cyanobacteria blooms trophic dead ends? Oecologia 172:551–62

    Google Scholar 

  • Piccini C, Aubriot L, Fabre A, Amaral V, Gonzales-Piana M, Giani A, Figueredo CC, Vidal L, Kruk C, Bonilla S (2011) Genetic and eco-physiological differences of South American Cylindrosermopsis raciborskii isolates support the hypothesis of multiple ecotypes. Harmful Algae 10:644–653

    Google Scholar 

  • Posch T, Köster O, Salcher MM, Pernthaler J (2012) Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Clim Change 2:809–813

    CAS  Google Scholar 

  • Posselt AJ, Burford MA, Shaw G (2009) Pulses of phosphate promote dominance of the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. J Phycol 45:540–546

    CAS  Google Scholar 

  • Post AF, Veen A, Mur LR (1985) Regulation of cyanobacterial photosynthesis determined from variable fluorescence yields of photosystem II. FEMS Microbiol Lett 35:129–133

    Google Scholar 

  • Saker ML, Graiffiths DJ (2000) The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia 39:349–354

    Google Scholar 

  • Scasso F, Mazzeo N, Gorga J, Kruk C, Lacerot G, Clemente J, Fabian D, Bonilla S (2001) Limnological changes of a subtropical shallow hypertrophic lake during itsrestoration. Two years of whole-lake experiments. Aquat Conserv Marine and Freshw Ecosyst 11:31–44

    Google Scholar 

  • Shafik HM, Herodek S, Présing M, Vörös L (2001) Factors effecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju. Algol Stud 103:75–93

    Google Scholar 

  • Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lürling M, Molinero JC, Mooij WM, van Donk E, Winder M (2012) Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448. 2012

    Google Scholar 

  • Sinha R, Pearson LA, Davis TW, Burford MA, Orr PT, Neilan BA (2012) Increased incidence of Cylindrospermopsis raciborskii in temperate zones—is climate change responsible? Water Res 46:1408–1419

    CAS  Google Scholar 

  • Stuken A, Rucker J, Endrulat T, Preussel K, Hemm M, Nixdorf B, Karsten U, Wiedner C (2006) Distribution of three alien cyanobacterial species (Nostocales) in northest Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45:696–703

    Google Scholar 

  • Sukenik A, Hadas O, Kaplan A, Quesada A (2012) Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes – physiological, regional, and global forces. Front Microbiol 3:1–9

    Google Scholar 

  • Svirčev Z, Obradović V, Codd GA, Marjanović P, Spoof L, Drobac D, Tokodi N, Petković A, Nenin T, Simeunović J, Važić T, Meriluoto J (2016) Massive fish mortality and Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake. Ecotoxicology 25:1353–1363

    Google Scholar 

  • Whittacker RH (1965) Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution. Science 147:250–260

    Google Scholar 

  • Wiedner C, Rucker J, Bruggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484

    Google Scholar 

  • Wilson AE, Sarnell O, Tillmanns AR (2006) Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol Oceanogr 51:1915–1924

    Google Scholar 

Download references

Acknowledgements

This study was funded by a National Natural Science Foundation of China (NSFC) grant (No. 31700399) and the grant of special Project of application-oriented technical research and development of Guangdong Province (No. 2015B020235007), and science and technology program of Guangzhou (No. 2016A030313098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ping Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zheng, X., Tang, Q. et al. Species diversity and seasonal dynamics of filamentous cyanobacteria in urban reservoirs for drinking water supply in tropical China. Ecotoxicology 29, 780–789 (2020). https://doi.org/10.1007/s10646-020-02189-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02189-1

Keywords

Navigation