Skip to main content

Advertisement

Log in

Assessing exposure risks for freshwater tilapia species posed by mercury and methylmercury

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Waterborne and dietborne exposures of freshwater fish to mercury (Hg) in the forms of inorganic (Hg(II)) and organic (methylmercury or MeHg) affect their growth, development, and reproduction. However, an integrated mechanistic risk model framework to predict the impact of Hg(II)/MeHg on freshwater fish is lacking. Here, we integrated biokinetic, physiological and biogeographic data to calibrate and then establish key risk indices—hazardous quotient and exceedance risk—for freshwater tilapia species across geographic ranges of several major rivers in Taiwan. We found that Hg(II) burden was highest in kidney followed by gill, intestine, liver, blood, and muscle. Our results showed that Hg was less likely to pose mortality risk (mortality rate less than 5 %) for freshwater tilapia species. However, Hg is likely to pose the potential hazard to aquatic environments constrained by safety levels for aquatic organisms. Sensitivity analysis showed that amount of Hg accumulated in tilapia was most influenced by sediment uptake rate. Our approach opens up new possibilities for predicting future fish population health with the impacts of continued Hg exposure to provide information on which fish are deemed safe for human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen P (1994) Distribution of mercury in the soft tissues of the blue tilapia Oreochromis aureus (Steindachner) after acute exposure to mercury (II) chloride. Bull Environ Contam Toxicol 53:675–683

    CAS  Google Scholar 

  • Amos HM, Jacob DJ, Streets DG, Sunderland EM (2013) Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob Biogeochem Cycle 27:410–421

    Article  CAS  Google Scholar 

  • Axelrad DA, Bellinger DC, Ryan LM, Woodruff TJ (2007) Dose–response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. Environ Health Perspect 115:609–615

    Article  Google Scholar 

  • Beckvar N, Dillon TM, Read LB (2005) Approaches for linking whole-body fish tissue residues of mercury or DDT to biological effects thresholds. Environ Toxicol Chem 24:2094–2105

    Article  CAS  Google Scholar 

  • Bloom NS, Moretto LM, Scopece P, Ugo P (2004) Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Mar Chem 91:85–99

    Article  CAS  Google Scholar 

  • Celo V, Lean DR, Scott SL (2006) Abiotic methylation of mercury in the aquatic environment. Sci Total Environ 368:126–137

    Article  CAS  Google Scholar 

  • Chen WY, Liao CM (2014) Interpreting copper bioaccumulation dynamics in tilapia using systems-level explorations of pulsed acute/chronic exposures. Ecotoxicology 23:1124–1136

    Article  CAS  Google Scholar 

  • Chen CW, Chen CF, Dong CD (2012a) Contamination and potential ecological risk of mercury in sediments of Kaohsiung River Mouth, Taiwan. Int J Environ Sci Dev 3:66–71

    Article  CAS  Google Scholar 

  • Chen CW, Chen CF, Dong CD (2012b) Enrichment and potential toxicity of mercury in the sediments of Jen-Gen River Mouth, Taiwan. Adv Biomed Eng 7:166–170

    Google Scholar 

  • China Petrochemical Development Corporation An-Shun Site (CPDCASS) (2012) China Petrochemical Development Corporation’s Remediation Plan for the An-shun Site and the East Bush Side of the Section 2-9 Road (in Chinese). http://epb3.tainan.gov.tw/cpdc/ch/upload/Case120120521133200.pdf

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  CAS  Google Scholar 

  • Clayden MG, Kidd KA, Wyn B, Kirk JL, Muir DC, O’Driscoll NJ (2013) Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environ Sci Technol 47:12047–12053

    Article  CAS  Google Scholar 

  • Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230

    Article  CAS  Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  CAS  Google Scholar 

  • Endo T, Haraguchi K, Hotta Y, Hisamichi Y, Lavery S, Dalebout ML, Baker CS (2005) Total mercury, methyl mercury, and selenium levels in the red meat of small cetaceans sold for human consumption in Japan. Environ Sci Technol 39:5703–5708

    Article  CAS  Google Scholar 

  • Ethier AL, Atkinson JF, Depinto JV, Lean DR (2012) Estimating mercury concentrations and fluxes in the water column and sediment of Lake Ontario with HERMES model. Environ Pollut 161:335–342

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2014) The State of World Fisheries and Aquaculture (2014) Report Highlights. http://www.fao.org/3/a-i3807e.pdf

  • Furieri LB, Fioresi M, Junior RF, Bartolomé MV, Fernandes AA, Cachofeiro V, Lahera V, Salaices M, Stefanon I, Vassallo DV (2011) Exposure to low mercury concentration in vivo impairs myocardial contractile function. Toxicol Appl Pharmacol 255:193–199

    Article  CAS  Google Scholar 

  • Gerber LR, Karimi R, Fitzgerald TP (2012) Sustaining seafood for public health. Front Ecol Environ 10:487–493

    Article  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sørensen N, Dahl R, Jørgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19:417–428

    Article  CAS  Google Scholar 

  • Guallar E, Sanz-Gallardo MI, van’t Veer P, Bode P, Aro A, Gómez-Aracena J, Kark JD, Riemersma RA, Martín-Moreno JM, Kok FJ (2002) Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347:1747–1754

    Article  CAS  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  CAS  Google Scholar 

  • Hsu CS, Liu PL, Chien LC, Chou SY, Han BC (2007) Mercury concentration and fish consumption in Taiwanese pregnant women. BJOG 114:81–85

    Article  CAS  Google Scholar 

  • Huang S, Chen C, Chen M (2008) Total and organic Hg in fish from the reservoir of a chlor-alkali plant in Tainan. Taiwan J Food Drug Anal 16:75–80

    CAS  Google Scholar 

  • Jardine TD, Kidd KA, O’Driscoll N (2013) Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat Toxicol 132–133:46–52

    Article  Google Scholar 

  • Jedrychowski W, Jankowski J, Flak E, Skarupa A, Mroz E, Sochacka-Tatara E, Lisowska-Miszczyk I, Szpanowska-Wohn A, Rauh V, Skolicki Z, Kaim I, Perera F (2006) Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland. Ann Epidemiol 16:439–447

    Article  Google Scholar 

  • Jiang CB, Yeh CY, Lee HC, Chen MJ, Hung FY, Fang SS, Chien LC (2010) Mercury concentration in meconium and risk assessment of fish consumption among pregnant women in Taiwan. Sci Total Environ 408:518–523

    Article  CAS  Google Scholar 

  • Ju YR, Chen WY, Liao CM (2014) Model-based risk assessment for milkfish and tilapia exposed to arsenic in a traditional polyculture system with seasonal variations. Aquac Eng 62:1–8

    Article  Google Scholar 

  • Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S (2012) Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 120:799–806

    Article  CAS  Google Scholar 

  • Karimi R, Fitzgerald TP, Fisher NS (2012) A quantitative synthesis of mercury in commercial seafood and implications for exposure in the United States. Environ Health Perspect 120:1512–1519

    Article  CAS  Google Scholar 

  • Kidd K, Batchelar K (2012) Mercury. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of non-essential metals. Academic Press, Amsterdam, pp 237–295

    Google Scholar 

  • Klinck J, Dunbar M, Brown S, Nichols J, Winter A, Hughes C, Playle RC (2005) Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 72:161–175

    Article  CAS  Google Scholar 

  • Knightes CD (2008) Development and test application of a screening-level mercury fate model and tool for evaluating wildlife exposure risk for surface waters with mercury-contaminated sediments (SERAFM). Environ Model Softw 23:495–510

    Article  Google Scholar 

  • Knightes CD, Sunderland EM, Craig Barber M, Johnston JM, Ambrose RB (2009) Application of ecosystem-scale fate and bioaccumulation models to predict fish mercury response times to changes in atmospheric deposition. Environ Toxicol Chem 28:881–893

    Article  CAS  Google Scholar 

  • Krabbenhoff DP, Sunderland EM (2013) Global change and mercury. Science 341:1457–1458

    Article  Google Scholar 

  • Laporte JM, Andres S, Mason RP (2002) Effect of ligands and other metals on the uptake of mercury and methylmercury across the gills and the intestine of the blue crab (Callinectes sapidus). Comp Biochem Physiol C 131:185–196

    Article  Google Scholar 

  • Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47:13385–13394

    Article  CAS  Google Scholar 

  • Liao CM, Liang HM, Chen BC, Singh S, Tsai JW, Chou YH (2005) Dynamical coupling of PBPK/PD and AUC-based toxicity models for arsenic in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. Environ Pollut 135:221–233

    Article  CAS  Google Scholar 

  • Low KH, Zain SM, Abas ME, Salleh KM, Teo YY (2015) Distribution and health risk assessment of trace metals in freshwater tilapia from three different aquaculture sites in Jelebu Region (Malaysia). Food Chem 177:390–396

    Article  CAS  Google Scholar 

  • Mahmoud HH, Mazrouh MM (2008) Biology and fisheries management of tilapia species in Rosetta branch of the Nile River, Egypt. J Aquat Res 34:272–284

    Google Scholar 

  • Malczyk EA, Branfireun BA (2015) Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem. Sci Total Environ 524–525:260–268

    Article  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1995) Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut 80:915–921

    Article  CAS  Google Scholar 

  • Ministry of Health and Welfare (MOHW, R.O.C., Taiwan) (2008) Compilation of exposure factors. Report NO. DOH96-HP-1801. (in Chinese)

  • Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  • Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL, Elonen CM (1996) A physiologically based toxicokinetic model for dermal absorption of organic chemicals by fish. Fundam Appl Toxicol 31:229–242

    Article  CAS  Google Scholar 

  • Oken E, Choi AL, Karagas MR, Mariën K, Rheinberger CM, Schoeny R, Sunderland E, Korrick S (2012) Which fish should I eat? Perspectives influencing fish consumption choices. Environ Health Perspect 120:790–798

    Article  CAS  Google Scholar 

  • Orenstein ST, Thurston SW, Bellinger DC, Schwartz JD, Amarasiriwardena CJ, Altshul LM, Korrick SA (2014) Prenatal organochlorine and methylmercury exposure and memory and learning in school-age children in communities near the New Bedford Harbor Superfund site, Massachusetts. Environ Health Perspect 122:1253–1259

    CAS  Google Scholar 

  • Ostrea EM Jr, Preccilla R, Moroles V, Go J, Tan E, Hernandez E, Baens-Ramirez G, Manlapaz M (1997) Significant fetal exposure to heavy metals as detected by meconium analysis. Pediatr Res 41:168A

    Google Scholar 

  • Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335

    Article  CAS  Google Scholar 

  • Pereira P, Raimundo J, Barata M, Araújo O, Pousão-Ferreira P, Canário J, Almeida A, Pacheco M (2015) A new page on the road book of inorganic mercury in fish body—tissue distribution and elimination following waterborne exposure and post-exposure periods. Metallomics 7:525–535

    Article  CAS  Google Scholar 

  • Peters SA (2012) Physiologically-based pharmacokinetic (PBPK) modeling and simulations. Wiley, New Jersey

    Book  Google Scholar 

  • Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

    Article  CAS  Google Scholar 

  • Ramirez GB, Pagulayan O, Akagi H, Francisco Rivera A, Lee LV, Berroya A, Vince Cruz MC, Casintahan D (2003) Tagum study II: follow-up study at two years of age after prenatal exposure to mercury. Pediatrics 111:e289–e295

    Article  Google Scholar 

  • Rheinberger CM, Hammitt JK (2012) Risk trade-offs in fish consumption: a public health perspective. Environ Sci Technol 46:12337–12346

    Article  CAS  Google Scholar 

  • Squadrone S, Prearo M, Brizio P, Gavinelli S, Pellegrino M, Scanzio T, Guarise S, Benedetto A, Abete MC (2013) Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 90:358–365

    Article  CAS  Google Scholar 

  • Sweilum MA (2006) Effect of chronic exposure to sublethal levels of mercury on total production, physiological functions and economical efficiency of tilapia fish, with regard to properties of ponds water. Egypt Aquat Biol Fish 10:165–183

    Google Scholar 

  • Taiwan EPA (Environmental Protection Administration, Executive Yuan, R.O.C., (Taiwan)) (2012a) Category management and usage restrictions for sediment quality indicators (in Chinese). http://epb3.tainan.gov.tw/cpdc/ch/upload/Case120120521104142.pdf

  • Taiwan EPA (Environmental Protection Administration, Executive Yuan, R.O.C., (Taiwan)) (2013a) Survey on the environmental distribution of toxic chemicals, (2013) (in Chinese). http://www.epa.gov.tw/ct.asp?xItem=13891&ctNode=32227

  • Taiwan EPA (Environmental Protection Administration, Executive Yuan, R.O.C., (Taiwan)) (2013b) Investigation for contamination source in sediment and its transport modeling—take internal major river for example (in Chinese). http://epr.epa.gov.tw/upload/openFull/100/1007131085/epa-G1-1007131085-06-05.pdf

  • Taiwan EPA (Taiwan Environmental Protection Administration, Executive Yuan, R.O.C., (Taiwan)) (2012b) The determination of total mercury in soils, sediments, and wastes by cold vapor atomic absorption spectroscopy (NIEA M317.03B) (in Chinese). http://www.niea.gov.tw/niea/pdf/REFSOIL/M31703B.pdf

  • Taiwan FDA (Food and Drug Administration, Ministry of Health and Welfare, R.O.C. Taiwan) (2013) Sanitation Standard for Aquatic Animal. https://www.consumer.fda.gov.tw/Law/Detail.aspx?nodeID=518&lang=1&lawid=100

  • Thomann RV, Shkreli F, Harrison S (1997) A pharmacokinetic model of cadmium in rainbow trout. Environ Toxicol Chem 16:2268–2274

    Article  CAS  Google Scholar 

  • Tong Y, Zhang W, Chen C, Chen L, Wang W, Hu X, Wang H, Hu D, Ou L, Wang X, Wang Q (2014) Fate modeling of mercury species and fluxes estimation in an urban river. Environ Pollut 187:54–61

    Article  Google Scholar 

  • Tweedy BN, Drenner RW, Chumchal MM, Kennedy JH (2013) Effects of fish on emergent insect-mediated flux of methyl mercury across a gradient of contamination. Environ Sci Technol 47:1614–1619

    CAS  Google Scholar 

  • Vieira HC, Morgado F, Soares AM, Abreu SN (2015) Fish consumption recommendations to conform to current advice in regard to mercury intake. Environ Sci Pollut Res 22:9595–9602

    Article  CAS  Google Scholar 

  • Wang WX (2012) Biodynamic understanding of mercury accumulation in marine and freshwater fish. Adv Environ Res 1:15–35

    Article  CAS  Google Scholar 

  • Wang R, Wang WX (2012) Contrasting mercury accumulation patterns in tilapia (Oreochromis niloticus) and implications on somatic growth dilution. Aquat Toxicol 114–115:23–30

    Article  Google Scholar 

  • Wang SW, Lin KH, Hsueh YM, Liu CW (2007) Arsenic distribution in a tilapia (Oreochromis mossambicus) water-sediment aquacultural ecosystem in blackfoot disease hyperendemic areas. Bull Environ Contam Toxicol 78:147–151

    Article  CAS  Google Scholar 

  • Wang R, Wong MH, Wang WX (2010) Mercury exposure in the freshwater tilapia Oreochromis niloticus. Environ Pollut 158:2694–2701

    Article  CAS  Google Scholar 

  • Wang R, Feng XB, Wang WX (2013) In vivo mercury methylation and demethylation in freshwater tilapia quantified by mercury stable isotopes. Environ Sci Technol 47:7949–7957

    Article  CAS  Google Scholar 

  • Watras CJ, Back RC, Halvorsen S, Hudson RJ, Morrison KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1990) Environmental Health Criteria 101: Methylmercury. WHO, Geneva

    Google Scholar 

  • Wu TN (2006) Distribution of methylmercury in a mercury-contaminated ecosystem. Pract Period Hazard Toxic Radioact Waste Manag 10:192–197

    Article  CAS  Google Scholar 

  • Zillioux EJ (2015) Mercury in fish: history, sources, pathways, effects, and indicator usage. In: Armon RH, Hänninen O (eds) Environmental indicators. Springer, Dordrecht, pp 743–766

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Min Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and animal rights

The article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Yi-Hsien Cheng and Yi-Jun Lin contributed equally to this work that was initiated in the Fall 2014 Class “Simulation and Computation for Biosystems (II).”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YH., Lin, YJ., You, SH. et al. Assessing exposure risks for freshwater tilapia species posed by mercury and methylmercury. Ecotoxicology 25, 1181–1193 (2016). https://doi.org/10.1007/s10646-016-1672-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1672-4

Keywords

Navigation