Skip to main content
Log in

Plants as models for chromium and nickel risk assessment

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The adverse effects of Cr(III), Cr(VI), and Ni(II) expressed as root and shoot growth inhibition, metal accumulation and translocation throughout plants, and genotoxicity study were examined. To examine phytoxicity and metal accumulation, Vicia sativa, Raphanus sativus, Zea mays and Sinapis alba plants were used. Except for S. alba root growth inhibition, Ni had the strongest inhibitory effect on root and shoot growth. The inhibitory rank order based on IC50 values was Ni(II) > Cr(VI) > Cr(III). Z. mays was the least sensitive to all metals. While the accumulation of Cr was higher in the roots than the upper plant parts, Ni transport to shoots was at least two times higher than that of Cr. The highest accumulation of Cr was found in Z. mays and that of Ni in V. sativa and Z. mays roots. For all plants, the translocation factor was higher for Cr(VI) than for Cr(III). The translocation factor for Ni was several times higher than those of Cr. For mutagenicity assay, root tips of V. sativa, R. sativus and Z. mays were used. All metals exerted a significant increase of chromosomal aberrations and the rank order of aberrations was: Cr(VI) > Ni(II) > Cr(III). Genotoxic effects of metals were also determined by analysis of micronuclei frequency in the pollen tetrads of Tradescantia plants. None of metals significantly stimulated micronuclei frequency and the genotoxic effect decreased in the following order: Cr(VI) ≥ Ni(II) > Cr(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barcelo J, Poschenrieder C, Gunse B (1986) Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. J Exp Bot 37:178–187

    Article  CAS  Google Scholar 

  • Barman SC, Sahu RK, Bhargava SK, Chaterjee C (2000) Distribution of metals in wheat, mustard and weed grown in field irrigated with industrial effluents. Bull Environ Contam Toxicol 64:489–596

    Article  CAS  Google Scholar 

  • Barton LL, Johnson GV, O’Nan AG, Wagener BM (2000) Inhibition of ferric chelate reductase in alfalfa roots by cobalt, nickel, chromium, and copper. J Plant Nutr 23:1833–1845

    Article  CAS  Google Scholar 

  • Bennicelli R, Stępniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146

    Article  CAS  Google Scholar 

  • Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremed 7:153–165

    Article  CAS  Google Scholar 

  • Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  Google Scholar 

  • Cervantes C, Garcia JC, Devars S, Corona FG, Tavera HL, Torres-Guzman JC, Moreno-Sánchez R (2001) Interactions of chromium with micro-organisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chandra S, Chauhan LKS, Pande PN, Gupta SK (2004) Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba. Environ Toxicol 19:129–133

    Article  CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  Google Scholar 

  • Chauhan LKS, Saxena PN, Sundararaman V, Gupta SK (1998) Diuron-induced cytological and ultrastructural alterations in the root meristem cells of Allium cepa. Pest Biochem Physiol 62:152–163

    Article  CAS  Google Scholar 

  • Fargašová A (1994) Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds. Bull Environ Contam Toxicol 52:452–456

    Article  Google Scholar 

  • Fargašová A (1998) Root growth inhibition, photosynthetic pigments production, and metal accumulation in Sinapis alba as the parameters for trace metals effect determination. Bull Environ Contam Toxicol 61:762–769

    Article  Google Scholar 

  • Fargašová A, Beinrohr E (1998) Metal-metal interactions in accumulation of V5+, Ni2+, Mo6+, Mn2+ and Cu2+ in under- and above-ground parts of Sinapis alba. Chemosphere 36:1305–1317

    Article  Google Scholar 

  • Fargašová A, Lištiaková J (2009) Cr and Ni simultaneous phytotoxicity and mutagenicity assay. Nova Biotechnologica 9:107–112

    Google Scholar 

  • Fargašová A, Šmelková M, Matúš P (2011) Sinapis alba reactions on the stress induced by chromium and nickel. Fresenius Environ Bull 20:3374–3380

    Google Scholar 

  • Gabbrielli R, Pandolfini T, Vergnamo O, Palandri MR (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122:271–277

    Article  CAS  Google Scholar 

  • Gheju M, Balcu I, Ciopec M (2009) Analysis of hexavalent chromium uptake by plants in polluted soils. Ovidius Univ Ann Chem 20:12–131

    Google Scholar 

  • Ghosh M, Singh SPA (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  Google Scholar 

  • Hanus J, Tomas J (1993) An investigation of chromium content and its uptake from soil in white mustard. Acta Phytotechn Zootechn 48:39–47

    Google Scholar 

  • James BR, Barlett RJ (1983) Behavior of chromium in soils VII. Adsorption and reduction of hexavalent forms. J Environ Qual 12:177–181

    Article  CAS  Google Scholar 

  • Knasmüller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420:37–48

    Google Scholar 

  • Kovalchuk O, Kovalchuk I, Arkhipov A, Telyuk P, Hohn B, Kovalchuk L (1998) The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident. Mutat Res 415:47–57

    CAS  Google Scholar 

  • Kristen U (1997) Use of higher plants as screens for toxicity assessment. Toxicol In Vitro 11:181–191

    Article  CAS  Google Scholar 

  • Majer BJ, Grummt T, Uhl M, Knasmüller S (2005) Use of plant bioassays for the detection of genotoxins in the aquatic environment. Acta Hydrochim Hydrobiol 33:45–55

    Article  CAS  Google Scholar 

  • Miadoková E, Dúhová V, Vlčková V, Sládková L, Suchá V, Vlček D (1999) Genetic risk assessment of acid waste water containing metals. Gen Physiol Biophys 18:92–98

    Google Scholar 

  • Miadoková E, Svidová S, Vlčková V, Dúhová V, Pražmáriová E, Tothová K, Naďová S, Kogan G, Rauko P (2005) The role of natural biopolymers in genotoxicity of mutagens/carcinogens elimination. Biomed Pap Med Fac Univ Palacky Olomouc Czech R 149:493–496

    Google Scholar 

  • Mičieta K, Murín G (1998) Tree species of genus pinus suitable as bioindicators of polluted environment. Water Air Soil Pollut 104:413–422

    Article  Google Scholar 

  • Mišík M, Mičieta K, Solenská M, Mišíková K, Pisarčíková H, Knasmüller S (2007) In situ biomonitoring of the genotoxic effects of mixed industrial emissions using the Tradescantia micronucleus and pollen abortion tests with wild life plants: demonstration of the efficacy of emission controls in an eastern European city. Environ Pollut 145:459–466

    Article  Google Scholar 

  • Němeček J, Podlešáková E, Vácha R (2002) Transfer of trace elements with low soil mobility into plants. Rostl Vyroba 48:45–50

    Google Scholar 

  • Omenn GS (1991) Future research direction in cancer ecogenetics. Mutat Res 247:283–291

    Article  CAS  Google Scholar 

  • Pandey N, Sharma ChP (2002) Effect of metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Pandey N, Sharma CP (2003) Chromium interference in iron nutrition and water relations of cabbage. Environ Exp Bot 49:195–200

    Article  CAS  Google Scholar 

  • Patierno SR, Costa M (1987) Effect of nickel II on nuclear protein binding in intact mammalian cells. Cancer Biochem Biophys 9:113–126

    CAS  Google Scholar 

  • Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremed 3:289–300

    Article  CAS  Google Scholar 

  • Quian X (2004) Mutagenic effects of chromium trioxide on root tip cells of Vicia faba. J Zhejiang Univ Sci 5:1570–1576

    Article  Google Scholar 

  • Rossman TG (1995) Metal mutagenesis. In: Goyer RA, Cherian GC (eds) Toxicology of Metals. Springer, New York, pp 373–430

    Chapter  Google Scholar 

  • Rout GR, Sanghamitra S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-toletant populations of Echinochloa colona (L.). Chemosphere 40:855–859

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ (2002) Chemical speciation accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchem J 71:255–259

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Sharma DC, Chatterjee C, Sharma CP (1995) Chromium accumulation and its effects on wheat (Triticum aestivum L. c.v. Dh 2204) metabolism. Plant Sci 111:145–151

    Article  CAS  Google Scholar 

  • Smith S, Peterson PJ, Kwan KHM (1989) Chromium accumulation, transport and toxicity in plants. Toxicol Environ Chem 24:241–251

    Article  CAS  Google Scholar 

  • Szárazová K, Fargašová A, Hiller E, Velická Z, Pastierová J (2008) Phytotoxic effects and translocation of Cr and Ni in washing wastewaters from cutlery production line to mustard (Sinapis alba L.) seedlings. Fresenius Environ Bull 17:58–65

    Google Scholar 

  • Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    Article  CAS  Google Scholar 

  • U.S. EPA (2000) Guidance for Data Quality Assessment: Practical Methods for Data Analysis (QA/G-9), EPA/600/R-96/084, Office of Environmental Information, 219 p

  • Varun M, D’Souza R, Pratas J, Paul MS (2011) Evaluation of phytostabilization, a green technology to remove metals from industrial sludge using Typha latifolia L. Biotechnol Bioinf Bioeng 1:137–145

    Google Scholar 

  • Wallace A, Alexander GV, Chaudhry FM (1977) Phytotoxicity and some interactions of the essential trace metals iron, manganese, molybdenum, zinc, copper and boron. Commun Soil Sci Plant Anal 8:741–750

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Jin-Hong Q, Terry N, Qian JH (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences under the contract No. VEGA 11/1139/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fargašová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fargašová, A. Plants as models for chromium and nickel risk assessment. Ecotoxicology 21, 1476–1483 (2012). https://doi.org/10.1007/s10646-012-0901-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0901-8

Keywords

Navigation