Skip to main content
Log in

Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Natural populations that are exposed to pesticides in their environment may at the same time be exposed to natural stressors like parasites and predators, which may interact with pesticide exposure. This may not only impact target pest species but also a wide variety of non-target species. This review reports on a joint research program in the water flea Daphnia magna, a non-target species often used as model organism in ecology and ecotoxicology. The focus is on different aspects that are of key importance to understand the evolutionary ecology of pesticide exposure: (1) the capacity of natural populations to genetically adapt to pesticide exposure (2) the added complexity of synergistic effects caused by simultaneous exposure to natural stressors, and (3) the potential interference of evolutionary costs of adaptation to pesticide exposure. Our results showed that natural populations were able to rapidly evolve resistance to the pesticide carbaryl but at the expense of fitness costs. Individuals selected for carbaryl resistance had higher survival rates when exposed to the pesticide but also a greater susceptibility to the challenge imposed by the bacterial endoparasite Pasteuria ramosa. The evolved resistance to carbaryl was in some cases only expressed in the absence of fish kairomones. Further, it became clear that the responses to both exposure to single and combined stressors was for several life history variables strongly dependent upon past exposure to carbaryl. This indicates that past exposures to pesticides are important and can not be neglected when evaluating responses to current stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal M, Naraharisetti SB, Dandapat S, Degen GH, Malik JK (2008) Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan. Toxicology 251:51–60

    Article  CAS  Google Scholar 

  • Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y (2004) Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution 58:579–586

    CAS  Google Scholar 

  • Agra AR, Guilhermino L, Soares AMVM, Barata C (2010) Genetic costs of tolerance to metals in Daphnia longispina populations historically exposed to a copper mine drainage. Environ Toxicol Chem 29:939–946

    Article  CAS  Google Scholar 

  • Albert A, Drouillard K, Haffner GD, Dixon B (2007) Dietary exposure to low pesticide doses causes long-term immunosuppression in the leopard frog (Rana pipiens). Environ Toxicol Chem 26:1179–1185

    Article  CAS  Google Scholar 

  • Arnaud L, Haubruge E, Gage MJG (2005) The malathion-specific resistance gene confers a sperm competition advantage in Tribolium castaneum. Funct Ecol 19:1032–1039

    Article  Google Scholar 

  • Athrey NRG, Leberg PL, Klerks PL (2007) Laboratory culturing and selection for increased resistance to cadmium reduce genetic variation in the least killifish, Heterandria formosa. Environ Toxicol Chem 26:1916–1921

    Article  CAS  Google Scholar 

  • Auld SKJR, Scholefield JA, Little TJ (2010) Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite. P Roy Soc B Biol Sci 227:3291–3297

    Article  Google Scholar 

  • Barata C, Baird DJ, Soares AM (2002) Determining genetic variability in the distribution of sensitivities to toxic stress among and within field populations of Daphnia magna. Environ Sci Technol 36:3045–3049

    Article  CAS  Google Scholar 

  • Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M (2002) High Wolbachia density in insecticide-resistant mosquitoes. P Roy Soc B Biol Sci 269:1413–1416

    Article  Google Scholar 

  • Berticat C, Duron O, Heyse D, Raymond M (2004) Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genetical Research 83:189–196

    Article  CAS  Google Scholar 

  • Brausch JM, Smith PN (2009) Development of resistance to cyfluthrin and naphthalene among Daphnia magna. Ecotoxicology 18:600–609

    Article  CAS  Google Scholar 

  • Campero M, De Block M, Ollevier F, Stoks R (2008) Correcting the short-term effect of food deprivation in a damselfly: mechanisms and costs. J Anim Ecol 77:66–73

    Article  Google Scholar 

  • Carriere Y, Deland JP, Roff DA, Vincent C (1994) Life-history costs associated with the evolution of insecticide resistance. P Roy Soc B Biol Sci 258:35–40

    Article  CAS  Google Scholar 

  • Colbourne J, Pfrender ME, Gilbert D et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–560

    Article  CAS  Google Scholar 

  • Coors A, De Meester L (2008) Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. J Appl Ecol 45:1820–1828

    Article  Google Scholar 

  • Coors A, De Meester L (2010) Fitness and virulence of a bacterial endoparasite in an environmentally stressed crustacean host. Parasitology 138:122–131

    Article  Google Scholar 

  • Coors A, Decaestecker E, Jansen M, De Meester L (2008) Pesticide exposure strongly enhances parasite virulence in an invertebrate host model. Oikos 117:1840–1846

    Article  Google Scholar 

  • Coors A, Vanoverbeke J, De Bie T, De Meester L (2009) Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna. Aquat Toxicol 95:71–79

    Article  CAS  Google Scholar 

  • Cothran RD, Greco RL, Relyea RA (2010) No evidence that a common pesticide impairs female mate choice in a freshwater amphipod. Environ Toxicol 25:310–314

    Article  CAS  Google Scholar 

  • Cousyn C, De Meester L, Colbourne JK, Brendonck L, Verschuren D, Volckaert F (2001) Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. P Natl Acad Sci USA 98:6256–6260

    Article  CAS  Google Scholar 

  • Davidson C (2004) Declining downwind: amphibian population declines in California and historical pesticide use. Ecol Appl 14:1892–1902

    Article  Google Scholar 

  • Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L (2007) Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450:U816–U870

    Article  Google Scholar 

  • Denholm I, Devine GJ, Williamson MS (2002) Evolutionary genetics—insecticide resistance on the move. Science 297:2222–2223

    Article  CAS  Google Scholar 

  • Depledge MH (1994) Genotypic toxicity: implications for individuals and populations. Envrion Health Perp 102:101–104

    Google Scholar 

  • Duron O, Labbé P, Berticat C, Rousset F, Guillot MR, Weill M (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314

    CAS  Google Scholar 

  • Farenhorst M, Mouatcho JC, Kikankie CK, Brooke BD, Hunt RH, Thomas MB, Koekemoer LL, Knols BGJ, Coetzee M (2009) Fungal infection counters insecticide resistance in African malaria mosquitos. P Natl Acad Sci USA 106:17443–17447

    Article  CAS  Google Scholar 

  • Futuyma DJ (1986) Evolutionary biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Part T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Onate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hanke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    Article  CAS  Google Scholar 

  • Giddings JM, Biever RC, Annunziato MF, Hosmer AJ (1996) Effects of diazinon on large outdoor pond microcosms. Environ Toxicol Chem 15:618–629

    Article  CAS  Google Scholar 

  • Griggs JL, Belden LK (2008) Effects of atrazine and metolachlor on the survivorship and infectivity of Echinostoma trivolvis trematode cercariae. Arch Environ Con Tox 54:195–202

    Article  CAS  Google Scholar 

  • Hanazato T (1995) Combined effect of the insecticide carbaryl and the chaoborus kairomone on helmet development in Daphnia Ambigua. Hydrobiologia 310:95–100

    Article  CAS  Google Scholar 

  • Haubruge E, Arnaud L (2001) Fitness consequences of malathion-specific resistance in red flour beetle (Coleoptera: Tenebrionidae) and selection for resistance in the absence of malathion. J Econ Entomol 94:552–557

    Article  CAS  Google Scholar 

  • Jansen M, Stoks R, Coors A, De Meester L (2010) No evidence for a cost of selection by carbaryl exposure in terms of vulnerability to fish predation in Daphnia magna. Hydriobiologia 643:123–128

    Article  CAS  Google Scholar 

  • King KC, Mclaughlin JD, Boily M, Marcogliese DJ (2010) Effects of agricultural landscape and pesticides on parasitism in native bullfrogs. Biol Conserv 143:302–310

    Article  Google Scholar 

  • Klerks PL, Levinton JS (1989) Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted site. Biol Bull 179:135–141

    Article  Google Scholar 

  • Koehn RK, Bayne BL (1989) Towards a physiological and genetic understanding of the energetics of the stress response. Biol J Lin Soc 37:157–171

    Article  Google Scholar 

  • Lampert W (1987) Predictability in lake ecosystems: the role of biotic intercations. In: Schultze ED, Zwölfer H (eds) Ecological studies. Springer, Berlin, Heidelberg, pp 333–346

    Google Scholar 

  • Lenormand T, Bourget D, Guillemaud T, Raymond M (1999) Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 400:861–864

    Article  CAS  Google Scholar 

  • Lopes I, Baird DJ, Ribeiro R (2006) Genetic adaptation to metal stress by natural populations of Daphnia longispina. Ecotox Environ Safe 63:275–285

    Article  CAS  Google Scholar 

  • Lopes PC, Sucena E, Santos ME, Magalhaes S (2008) Rapid experimental evolution of pesticide resistance in C. elegans entails no cost and affects the mating system. Plos one 3:e3741

    Article  Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  Google Scholar 

  • Pauwels K, De Meester L, Deceastecker E, Stoks R (2010). Phenoloxidase but not lytic activity reflects resistance against Pasteuria ramosa in Daphnia magna. Biol Lett. doi: 10.1098/rsbl.2010.0634

  • Pestana JLT, Loureiro S, Baird DJ, Soares AMVM (2010) Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus. Chemosphere 78:241–248

    Article  CAS  Google Scholar 

  • Poynton HC, Varshavsky JR, Chang B, Cavigiolio G, Chan S, Holman PS, Loguinov AV, Bauer DJ, Komachi K, Theil EC, Perkins EJ, Hughes O, Vulpe CD (2007) Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol 41:1044–1050

    Article  CAS  Google Scholar 

  • Raymond M, Berticat C, Weill M, Pasteur N, Chevillon C (2001) Insecticide resistance in the mosquito Culex pipiens: What have we learned about adaptation? Genetica 112(113):287–296

    Article  Google Scholar 

  • Relyea RA (2003) Predator cues and pesticides: a double dose of danger for amphibians. Ecol Appl 13:1515–1521

    Article  Google Scholar 

  • Relyea RA (2006) The effects of pesticides, pH, and predatory stress on amphibians under mesocosm conditions. Ecotoxicology 15:503–511

    Article  CAS  Google Scholar 

  • Relyea RA, Hoverman JT (2008) Interactive effects of predators and a pesticide on aquatic communities. Oikos 117:1647–1658

    Article  Google Scholar 

  • Relyea RA, Mills N (2001) Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor). P Natl Acad Sci USA 98:2491–2496

    Article  CAS  Google Scholar 

  • Roff DA (1997) Evolutionary quantitative genetics. Chapman and Hall, New York

    Google Scholar 

  • Rohr JR, Crumrine PW (2005) Effects of an herbicide and an insecticide on pond community structure and processes. Ecol Appl 15:1135–1147

    Article  Google Scholar 

  • Rohr JR, Raffel TR, Sessions SK, Hudson PJ (2008) Understanding the net effects of pesticides on amphibian trematode infections. Ecol Appl 18:1743–1753

    Article  Google Scholar 

  • Sih A, Bell AM, Kerby JL (2004) Two stressors are far deadlier than one. Trends Ecol Evol 19:274–276

    Article  Google Scholar 

  • Tabashnik BE, Dennehy TJ, Carriere Y (2005) Delayed resistance to transgenic cotton in pink bollworm. P Natl Acad Sci USA 102:15389–15393

    Article  CAS  Google Scholar 

  • Van Doorslaer W, Stoks R, Duvivier C, Bednarska A, De Meester L (2009) Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63:1867–1878

    Article  Google Scholar 

  • Vitousek PM, Mooney HALJ, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Walker CH, Hopkin SPSRM, Peakall DB (2006) Principles of ecotoxicology, 3rd edn. Taylor and Francis Group, CRC press, New York

    Google Scholar 

Download references

Acknowledgments

M.J. enjoyed a PhD fellowship of the Agency for Innovation by Science and Technology in Flanders (IWT, Flanders) during this study. A.C. was supported by a postdoctoral fellowship of the K.U. Leuven. This research was financially supported by projects GOA/08/06 and PF/2010/07 of the K.U. Leuven Research Fund and project G.0229.09 of FWO, Flanders. We thank two anonymous reviewers and the committee members of the PhD of MJ (Nico van Straalen, John Colbourne, Karel De Schamphelaere, Dries Knapen, Luisa Orsini, Ellen Decaestecker, Filip Volckaert) for their valuable comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, M., Coors, A., Stoks, R. et al. Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia . Ecotoxicology 20, 543–551 (2011). https://doi.org/10.1007/s10646-011-0627-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0627-z

Keywords

Navigation