Skip to main content

Advertisement

Log in

Effects of oil palm plantations on habitat structure and fish assemblages in Amazon streams

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The aim of this research is to assess the effects of oil palm plantations on stream habitat and their fish assemblage diversity. We hypothesize that streams which drain through oil palm plantations tend to be less heterogeneous, limiting the occurrence of many species, than streams that drain through forest fragments, which support higher fish diversity. A total of 17 streams were sampled; eight in forest fragments and nine in oil palm plantations. Environmental and biological variables were sampled along 150 m stretch in each stream. Of the 242 environmental variables measured, ten were considered important to assess the condition of structural habitat, and out of these variables, four were considered relevant in the distinction between streams in oil palm plantations and forest fragments. A total of 7245 fishes were collected, belonging to 63 species. Unlike our original hypothesis, the species richness did not differ between forest fragment and oil palm plantations streams, showing that it is not a good divert measure in streams disturbance assessment. However, fish assemblages differed in species composition, and 56 species were recorded in oil palm plantation streams, while 44 species were recorded in forest fragments streams. Some species were identified as indicators of either altered (Aequidens tetramerus and Apistogramma agassizii) or undisturbed areas (Helogenes marmoratus). Overall, oil palm plantations were proven to change stream habitat structure and fish species distribution, corroborating other studies that have evidenced changes in patterns of biological community structure due to impacts by different land uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albuquerque MF, Souza EB, Oliveira MCF, Souza-Júnior JA (2012) Precipitação nas mesorregiões do Estado do Pará: climatologia, variabilidade e tendências nas últimas décadas (1978-2008). Rev Bras Clim 6(6):151–168

    Google Scholar 

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Syst 35(1):257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122

    Article  Google Scholar 

  • Almeida AS, Vieira ICG (2013) Sumário Executivo: Cenários para a Amazônia – Área de Endemismo Belém. Museu Paraense Emílio Goeldi, Belém

    Google Scholar 

  • Almeida SM, Silva LC, Cardoso MR, Cerqueira PV, Juen L, Santos MP (2016) The effects of oil palm plantations on the functional diversity of Amazonian birds. J Trop Ecol 5:1–16

    Google Scholar 

  • Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. University of Auckland, New Zealand, Department of Statistics

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Baker ME, King RS (2010) A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecol Evol 1(1):25–37. https://doi.org/10.1111/j.2041-210X.2009.00007.x

    Article  Google Scholar 

  • Baker ME, King RS (2013) Of TITAN and straw men: an appeal for greater understanding of community data. Freshw Sci 32(2):489–506. https://doi.org/10.1899/12-142.1

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Griffith GE, Frydenborg R, McCarron E, White JS, Bastian ML (1996) A framework for biological criteria for Florida streams using benthic macroinvertebrates. J N Am Benthol Soc 15(2):185–211. https://doi.org/10.2307/1467948

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Striblings JB (1999) Rapid bioassessment protocols for use in streams and Wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edn. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C

  • Bonachea J, Viola M, Bruschi MA, Hurtado L, Forte LM, da Silva M et al (2010) Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin. Sci Total Environ 408(13):2674–2695. https://doi.org/10.1016/j.scitotenv.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Bryce SA, Lomnicky GA, Kaufmann PR (2010) Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria. J N Am Benthol Soc 29(2):657–672. https://doi.org/10.1899/09-061.1

    Article  Google Scholar 

  • Burress ED (2015) Cichlid fishes as models of ecological diversification: patterns, mechanisms, and consequences. Hydrobiologia 748(1):7–27. https://doi.org/10.1007/s10750-014-1960-z

    Article  Google Scholar 

  • Butler RA, Laurence WF (2009) Is the oil palm the next threat to the Amazon? Trop Conserv Sci 2(1):1–10

    Google Scholar 

  • Callisto M, Alves CBM, Lopes JM, Castro MA (2014) Condições ecológicas em bacias hidrográficas de empreendimentos hidrelétricos. CEMIG, Belo Horizonte

    Google Scholar 

  • Cardoso P, Rigal F, Fattorini S, Terzopoulou S, Borges PA (2013) Integrating landscape disturbance and indicator species in conservation studies. PLoS One 8(5):1–10. https://doi.org/10.1371/journal.pone.0063294

    Article  Google Scholar 

  • Casatti L, Teresa FB, Gonçalves-Souza T, Bessa E, Manzotti AR, Gonçalves CDS, Zeni JDO (2012) From forests to cattail: how does the riparian zone influence stream fish? Neotrop Ichthyol 10(1):205–214. https://doi.org/10.1590/S1679-62252012000100020

    Article  Google Scholar 

  • Clapcott JE, Collier KJ, Death RG, Goodwin EO, Harding JS, Kelly D, Leathwick JR, Yong RG (2012) Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshw Biol 57(1):74–90. https://doi.org/10.1111/j.1365-2427.2011.02696.x74

    Article  Google Scholar 

  • Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95(5):1084–1097. https://doi.org/10.1111/j.1365-2745.2007.01280.x

    Article  Google Scholar 

  • Correa FS, Juen L, Rodrigues LC, Silva-Filho HF, Santos-Costa MC (2015) Effects of oil palm plantations on anuran diversity in the eastern Amazon. Anim Biol 65(3–4):321–335. https://doi.org/10.1163/15707563-00002481

    Article  Google Scholar 

  • Crook DA, Robertson AI (1999) Relationship between riverine fish and woody debris: implications for lowland rivers. Mar Freshw Res 50(8):941–953. https://doi.org/10.1071/MF99072

    Article  Google Scholar 

  • Cunha EJ, Montag LFA, Juen L (2015) Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol Indic 52:422–429. https://doi.org/10.1016/j.ecolind.2014.12.024

    Article  Google Scholar 

  • Da Silva JA (2013) Avaliação do programa nacional de produção e uso do biodiesel no Brasil – PNPB. Rev Pol Agric 22(3):18–31

    Google Scholar 

  • Dayang-Norwana AAB, Kunjappan R, Chin M, Schoneveld G, Potter L, Andriani R (2011) The local impacts of oil palm expansion in Malaysia: an assessment based on a case study in Sabah state. Working paper 78. CIFOR, Bogor, Indonesia

  • De Souza ALT, Fonseca DG, Libório RA, Tanaka MO (2013) Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. For Ecol Manag 298:12–18. https://doi.org/10.1016/j.foreco.2013.02.022

    Article  Google Scholar 

  • De’Ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2

    Article  Google Scholar 

  • Deegan LA, Neill C, Haupert CL, Ballester MVR, Krusche AV, Victoria RL, Thomas SM, de Moor E (2011) Amazon deforestation alters small stream structure, nitrogen biogeochemistry and connectivity to larger rivers. Biogeochemistry 105(1):53–74. https://doi.org/10.1007/s10533-010-9540-4

    Article  CAS  Google Scholar 

  • Dosskey MG, Vidon P, Gurwick NP, Allan CJ, Duval TP, Lowrance R (2010) The role of riparian vegetation in protecting and improving chemical water quality in streams. J Am Water Resour Assoc 46(2):261–277. https://doi.org/10.1111/j.1752-1688.2010.00419.x

    Article  CAS  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Google Scholar 

  • FAO (2013) FAOSTAT database food and agriculture Organization of the United Nations, Rome, Italy. http://www.faostat.fao.org. Accessed 16 Jan 2016

  • Fausch KD, Lyons J, Karr JR, Angermeier PL (1990) Fish communities as indicators of environmental degradation. Am Fish Soc Symp 8:123–144

    Google Scholar 

  • Fernandes IM, Lourenço LS, Ota RP, Moreira MMM, Zawadzki CH (2012) Effects of local and regional factors on the fish assemblage structure in meridional Amazonian streams. Environ Biol Fish 96(7):837–848. https://doi.org/10.1007/s10641-012-0079-1

    Article  Google Scholar 

  • Ferreira CP, Cassati L (2006) Stream biotic integrity assessed by fish assemblages in the upper Rio Paraná basin. Biota Neotrop 6(3):0–0. https://doi.org/10.1590/S1676-06032006000300002

  • Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Brühl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity. Trends Ecol Evol 23(10):538–545. https://doi.org/10.1016/j.tree.2008.06.012

    Article  PubMed  Google Scholar 

  • Giam X, Hadiaty RK, Tan HH, Parenti LR, Wowor D, Sauri S, Chong KY, Yeo DCJ, Wilcove DS (2015) Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia. Conserv Biol 29(5):1357–1367. https://doi.org/10.1111/cobi.12483

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Harris JH (1995) The use of fish in ecological assessments. Aust J Ecol 20(1):65–80. https://doi.org/10.1111/j.1442-9993.1995.tb00523.x

    Article  Google Scholar 

  • Heartsill-Scalley T, Aide TM (2003) Riparian vegetation and stream condition in a tropical agriculture-secondary forest mosaic. Ecol Appl 13(1):225–234. https://doi.org/10.1890/1051-0761(2003)013[0225:RVASCI]2.0.CO;2

    Article  Google Scholar 

  • Hrodey PJ, Sutton TM, Frimpong EA, Simon TP (2009) Land-use impacts on watershed health and integrity in Indiana warmwater streams. Am Midl Nat 161(1):76–95. https://doi.org/10.1674/0003-0031-161.1.76

    Article  Google Scholar 

  • Huston M (1979) A general hypothesis of species diversity. Am Nat 113(1):81–101. https://doi.org/10.1086/283366

    Article  Google Scholar 

  • Iwata T, Nakano S, Inoue M (2003) Impacts of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecol Appl 13(2):461–473. https://doi.org/10.1890/1051-0761(2003)013[0461:IOPRDO]2.0.CO;2

    Article  Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74(8):2204–2214. https://doi.org/10.2307/1939574

    Article  Google Scholar 

  • Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities - the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58(1):157–170. https://doi.org/10.1139/f00-239

    Google Scholar 

  • Jaramillo-Villa U, Caramaschi EP (2008) Índices de integridade biótica usando peixes de água doce: Uso nas regiões tropical e subtropical. Oecol Bras 12(3):442–462

    Google Scholar 

  • Juen L, Cunha EJ, Carvalho FG, Ferreira MC, Begot TO, Andrade AL, Shimano Y, Leão H, Pompeu OS, Montag LFA (2016) Effects of oil palm plantations on the habitat structure and biota of streams in eastern Amazon. River Res Appl 32(10):2081–2094. https://doi.org/10.1002/rra.3050

    Article  Google Scholar 

  • Karr JR (1981) Assessment of biotic integrity using fish communities. Fisheries 6(6):21–27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2

    Article  Google Scholar 

  • Kaufmann PR, Hughes RM (2006) Geomorphic and anthropogenic influences on fish and amphibians in Pacific northwest coastal streams. In: Hughes RM, Wang L, Seelback PW (eds) Landscape influence on stream habitat and biological assemblages, vol 48. American Fisheries Society Symposium, Bethesda, pp 429–455

    Google Scholar 

  • Kaufmann PR, Levine P, Robison GE, Seeliger C, Peck DV (1999) Quantifying physical habitat in wadeable streams. U. S. Environmental Protection Agency, EPA/620/R-99/003, Washington, D.C

  • King RS, Richardson CJ (2003) Integrating bioassessment and ecological risk assessment: an approach to developing numerical water-quality criteria. Environ Manag 31(6):795–809. https://doi.org/10.1007/s00267-002-0036-4

    Article  Google Scholar 

  • Kongsager R, Reenberg A (2012) Contemporary land-use transitions: the global oil palm expansion. GLP report no. 4. GLP-IPO, Copenhagen

  • Kullander SO (2003) Check list of the freshwater fishes of south and central America. EDIPUCRS, Porto Alegre

    Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18. https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  • Lees AC, Moura NG, Almeida AS, Vieira ICG (2015) Poor prospects for avian biodiversity in Amazonian oil palm. PLoS One 10(5):1–17. https://doi.org/10.1371/journal.pone.0122432

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Li T, Li W, Qian Z (2010) Variations on ecosystem services value in response to land use changes in Shenzhen. Ecol Econ 69(7):1427–1435. https://doi.org/10.1016/j.ecolecon.2008.05.018

    Article  Google Scholar 

  • Luke SH, Barclay H, Bidin K, Vun Khen, C, Ewers RM, Foster WA et al (2016) The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrology 10(4):1–14. https://doi.org/10.1002/eco.1827

  • Macedo DR, Hughes RM, Ligeiro R, Ferreira WR, Castro MA, Junqueira NT, Oliveira DR, Firmiano KR, Kaufmann PR, Pompeu PS, Callisto M (2014a) The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landsc Ecol 29(6):1001–1016. https://doi.org/10.1007/s10980-014-0036-9

    Article  Google Scholar 

  • Macedo DR, Pompeu PS, Morais L, Castro MA, Alves CBM, França JS et al (2014b) Sampling site selection, land use and cover, field reconnaissance, and sampling. In: Callisto M, Hughes RM, Lopes JM, Castro MA (eds) Ecological conditions in hydropower basins. Companhia Energética de Minas Gerais, Belo Horizonte, pp 61–83

    Google Scholar 

  • McCabe DJ, Gotelli NJ (2000) Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecol 124(2):270–279. https://doi.org/10.1007/s004420000

    Article  CAS  Google Scholar 

  • McClain ME, Elsenbeer H (2001) Terrestrial inputs to Amazon streams and internal biogeochemical processing. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon Basin. Oxford University Press, Oxford, pp 185–208

    Google Scholar 

  • Mendonça FP, Magnusson WE, Zuanon J (2005) Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. Copeia 2005(4):751–764. https://doi.org/10.1643/0045-8511(2005)005[0751:RBHCAF]2.0.CO;2

    Article  Google Scholar 

  • Metzger JP, Casatti L (2006) From diagnosis to conservation: the state of the art of biodiversity conservation in the BIOTA/FAPESP program. Biota Neotrop 6(2):0–0. https://doi.org/10.1590/S1676-06032006000200002

  • Moerke AH, Lamberti GA (2006) Relationships between land use and stream ecosystems: a multi stream assessment in southwestern Michigan. In: Hughes RM, Wang L, Seelbach PW (eds) Landscape influences on stream habitats and biological assemblages, vol 48. American Fisheries Society Symposium, Maryland, pp 323–338

    Google Scholar 

  • Müller AA, Furlan-Junior J, Celestino-Filho P (2006) Embrapa Amazônia Oriental e o agronegócio do dendê no Pará. Embrapa Amazônia Oriental, Belém

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al (2016) Vegan: community ecology package. R package version 2.3–3. http://CRAN.R-project.org/package=vegan. Accessed 10 Jan 2016

  • Oliveira LL, Fontinhas RL, Lima AMM, Lima RJS (2002) Mapas dos parâmetros climatológicos do Estado do Pará: umidade, temperatura e insolação, médias anuais. Anais do XIII Congresso Brasileiro de Meteorologia. Sociedade Brasileira de Meteorologia, Fortaleza http://www.cbmet.com/cbm-files/22-762cad766c70d3a4452c4afd29decb7b.doc. Accessed 14 Dec 2015

    Google Scholar 

  • Peck DV, Herlihy AT, Hill BH, Hughes RM, Kaufmann PR, Klemm DJ et al (2006) Environmental monitoring and assessment program-surface water western pilot study: field operations manual for wadeable streams. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Persson UM, Azar C (2010) Preserving the world's tropical rorests - a price on carbon may not do. Environ Sci Technol 44(1):210–215. https://doi.org/10.1021/es902629x

    Article  CAS  PubMed  Google Scholar 

  • Poff NL, Ward JV (1990) Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environ Manag 14(5):629–645. https://doi.org/10.1007/BF02394714

    Article  Google Scholar 

  • Prudente BS, Pompeu PS, Juen L, Montag LF (2016) Effects of reduced-impact logging on physical habitat and fish assemblages in streams of eastern Amazonia. Freshw Biol 62(2):303–316

    Article  Google Scholar 

  • Pusey BJ, Arthington AH (2003) Importance of the riparian zone to the conservation and management of freshwater fish: a review. Mar Freshw Res 54(1):1–16. https://doi.org/10.1071/MF02041

    Article  Google Scholar 

  • R Development Core Team (2003) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramalho-Filho A, Motta PEF, Freitas PL, Teixeira WG (2010) Zoneamento agroecológico, produção e manejo para a cultura da palma de óleo na Amazônia. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Rawi CSM, Al-Shami SA, Madrus MR, Ahmad AH (2013) Local effects of forest fragmentation on diversity of aquatic insects in tropical forest streams: implications for biological conservation. Aquat Ecol 47(1):75–85. https://doi.org/10.1007/s10452-012-9426-8

    Article  Google Scholar 

  • Restrepo JD, Kettner AJ, Syvitski JPM (2015) Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Anthropocene 10:13–28. https://doi.org/10.1016/j.ancene.2015.09.001

    Article  Google Scholar 

  • Santos FB, Ferreira FC, Esteves KE (2015) Assessing the importance of the riparian zone for stream fish communities in a sugarcane dominated landscape (Piracicaba River basin, southeast Brazil). Environ Biol Fish 98(8):1895–1912. https://doi.org/10.1007/s10641-015-0406-4

    Article  Google Scholar 

  • Savilaakso S, Garcia C, Garcia-Ulloa J, Ghazoul J, Groom M, Guariguata MR, Laumonier Y, Nasi R, Petrokofsky G, Snaddon J, Zrust M (2014) Systematic review of effects on biodiversity from oil palm production. Eviron Evid 3(1):4. https://doi.org/10.1186/2047-2382-3-4

    Google Scholar 

  • Sazima I, Carvalho LN, Mendonça FP, Zuanon J (2006) Fallen leaves on the water-bed: diurnal camouflage of three night active fish species in an Amazonian streamlet. Neotrop Ichthyol 4(1):119–122. https://doi.org/10.1590/S1679-62252006000100013

    Article  Google Scholar 

  • Scarsbrook MR, Townsend CR (1993) Stream community structure in relation to spatial and temporal variation: a habitat templet study of two contrasting new Zeland streams. Freshw Biol 29(3):395–410. https://doi.org/10.1111/j.1365-2427.1993.tb00774.x

    Article  Google Scholar 

  • Scott MC, Hall LW Jr (1997) Fish assemblages as indicators of environmental degradation in Maryland coastal plain streams. Trans Am Fish Soc 126(3):349–360. https://doi.org/10.1577/1548-8659(1997)126<0349:FAAIOE>2.3.CO;2

    Article  Google Scholar 

  • Senior MJ, Hamer KC, Bottrell S, Edwards DP, Fayle TM, Lucey JM et al (2013) Trait-dependent declines of species following conversion of rain forest to oil palm plantations. Biodivers Conserv 22(1):253–268. https://doi.org/10.1007/s10531-012-0419-7

    Article  Google Scholar 

  • Shimano Y, Juen L (2016) How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Ann Limnol Int J Limnol 52:35–45. https://doi.org/10.1051/limn/2016004

    Article  Google Scholar 

  • Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  • Southwood TRE (1988) Tatics, strategies and templets. Oikos 52(1):3–18. https://doi.org/10.2307/3565974

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38(6):913–920. https://doi.org/10.1029/TR038i006p00913

    Article  Google Scholar 

  • Teresa FB, Casatti L (2012) Influence of forest cover and mesohabitat types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecol Freshw Fish 21(3):433–442. https://doi.org/10.1111/j.1600-0633.2012.00562.x

    Article  Google Scholar 

  • Terra BF, Hughes RM, Araújo FG (2015) Fish assemblages in Atlantic Forest streams: the relative influence of local and catchment environments on taxonomic and functional species. Ecol Freshw Fish Early view 25(4):527–544. https://doi.org/10.1111/eff.12231

    Article  Google Scholar 

  • Turner EC, Foster WA (2009) The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. J Trop Ecol 25(1):23–30. https://doi.org/10.1017/S0266467408005658

    Article  Google Scholar 

  • Uieda VS, Castro RMC (1999) Coleta e fixação de peixes de riachos. In: Caramaschi EP, Mazzoni R, Peres-Neto PR (eds) Ecologia de Peixes de Riachos, Série Oecologia Brasiliensis, vol VI. PPGE-UFRJ, Rio de Janeiro, pp 1–22

    Google Scholar 

  • Wantzen KM, Mol JH (2013) Soil erosion from agriculture and mining: a threat to tropical stream ecosystems. Agriculture 3(4):660–683. https://doi.org/10.3390/agriculture3040660

    Article  Google Scholar 

  • Wrigth JP, Flecker AS (2004) Deforesting the riverscape: the effects of wood on fish diversity in a Venezuelan piedmont stream. Biol Conserv 120(3):443–451. https://doi.org/10.1016/j.biocon.2004.02.022

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to financial support of Coordination for the Improvement of Higher Education Personnel (CAPES) and National Counsel of Technological and Scientific Development (CNPq); and logistic support for field research of the Conservation International (CI-Brazil) and Agropalma Group.

Funding

Ferreira MC has received Granting Scholarship by Coordination for the Improvement of Higher Education Personnel (CAPES). Prudente BS has received Research Grant by National Councel of Technological and Scientific Development (CNPq) through the Programa de Capacitação Internacional (PCI). Juen L. and Montag LFA has received Research Grants by Coordination for the Improvement of Higher Education Personnel (CAPES) / Pró-Reitoria de Pesquisa e Pós-Graduação (PROPESP/UFPA) and Productivity Grants by National Counsel of Technological and Scientific Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Octavio Begot.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M.C., Begot, T.O., da Silveira Prudente, B. et al. Effects of oil palm plantations on habitat structure and fish assemblages in Amazon streams. Environ Biol Fish 101, 547–562 (2018). https://doi.org/10.1007/s10641-018-0716-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-018-0716-4

Keywords

Navigation