Skip to main content
Log in

Ocular dimensions and cone photoreceptor topography in adult Nile Tilapia Oreochromis niloticus

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Information on the anatomy of the eye and the topography of cone photoreceptor cells in the retina is presented for the Nile Tilapia (Oreochromis niloticus). In adults, the shape and proportions of the ocular components of the prominent eye conform to the general form of fish eyes, as determined using cryo-sectioned eyes. The lens is approximately spherical and there is little variation in the distance from the centre of the lens to the border between the choroid and retina at a range of angles about the optical axis. The average ratio of the distance from the centre of the lens to the retina: lens radius (Matthiessen’s ratio) is 2.44:1. In retinal wholemounts, single and double (twin) cone photoreceptors, forming a square mosaic, are present. Peak photoreceptor densities for both morphological cone types are found in the temporal retina. Using peak cone densities and estimates of focal length from cryo-sectioned eyes, visual acuity is calculated to be 5.44 cycles per deg. The lack of apparent specific ocular or retinal specializations and the relatively low visual acuity reflect the lifestyle of the Nile Tilapia and may allow it to adapt to changes in visual environment in its highly variable natural habitat as well as contributing to the ‘ecological flexibility’ of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali MA, Anctil M (1976) Retinas of fishes: an atlas. Springer-Verlag, Berlin

    Google Scholar 

  • Bailes HJ, Robinson SR, Trezise AEO, Collin SP (2006) Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Kreft 1870). J Comp Neurol 494:381–397

    Article  PubMed  Google Scholar 

  • Beaudet L, Novales Flamarique I, Hawryshyn CW (1997) Cone photoreceptor topography in the retina of sexually mature Pacific salmonid fishes. J Comp Neurol 383:49–59

    Article  CAS  PubMed  Google Scholar 

  • Bowmaker JK (1995) The visual pigments of fish. Prog Retin Eye Res 15:1–31

    Article  Google Scholar 

  • Braekevelt CR (1992) Retinal photoreceptor fine structure in the velvet cichlid (Astronotus ocellatus). Anat Embryol 186:363–370

    CAS  PubMed  Google Scholar 

  • Braekevelt CR, Smith SA, Smith BJ (1998a) Fine structure of the retinal pigment epithelium of Oreochromis niloticus L. (Cichlidae; Teleostei) in light- and dark-adaptation. Anat Rec 252:444–452

    Article  CAS  PubMed  Google Scholar 

  • Braekevelt CR, Smith SA, Smith BJ (1998b) Photoreceptor fine structure in Oreochromis niloticus L. (Cichlidae; Teleostei) in light- and dark-adaptation. Anat Rec 252:453–461

    Article  CAS  PubMed  Google Scholar 

  • Browman HI (2005) Applications of sensory biology in marine ecology and aquaculture. Mar Ecol Prog Ser 287:266–269

    Google Scholar 

  • Cariani PA (2001) Specialist and generalist strategies in sensory evolution. Artif Life 7:211–214

    Article  CAS  PubMed  Google Scholar 

  • Carleton KL, Spady TC, Streelman JT, Kidd MR, McFarland WN, Loew ER (2008) Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol 6:22

    Article  PubMed  CAS  Google Scholar 

  • Castro ALS, Gonçalves-de-Freitas E, Volpato GL, Oliveira C (2009) Visual communication stimulates reproduction in Nile Tilapia Oreochromis niloticus (L.). Braz J Med Biol Res 42:368–374

    Article  CAS  PubMed  Google Scholar 

  • Collin SP (1997) Specialisations of the teleost visual system: adaptive diversity from shallow-water to deep-sea. Acta Physiol Scand 161 (Suppl 638):5–24

    Google Scholar 

  • Collin SP, Pettigrew J (1989) Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain Behav Evol 34:184–192

    Article  CAS  PubMed  Google Scholar 

  • Curcio AC, Packer O, Kalina RE (1987) A whole mount method for sequential analysis of photoreceptor and ganglion cell topography in a single retina. Vis Res 27:9–15

    Article  CAS  PubMed  Google Scholar 

  • Douglas RH, Hawryshyn CW (1990) Behavioral studies of fish vision: an analysis of visual capabilities. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 373–418

    Google Scholar 

  • Eigenmann CH, Shafer GD (1900) The mosaic of single and twin cones in the retina of fishes. Am Nat 34:109

    Article  Google Scholar 

  • El-Sayed AFM (2006) Tilapia culture. CABI, Wallingford

    Book  Google Scholar 

  • Engström K (1963) Cone types and cone arrangements in teleost retinae. Acta Zool (Stockh) 44:179–243

    Article  Google Scholar 

  • Fernald RD (1990) The optical system of fishes. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 45–61

    Google Scholar 

  • Fernald RD, Liebman PA (1980) Visual receptor pigments in the African cichlid fish Haplochromis burtoni. Vis Res 20:857–864

    Article  CAS  PubMed  Google Scholar 

  • Fessehaye Y, El-bialy Z, Rezk MA, Crooijmans R, Bovenhuis H, Komen H (2006) Mating systems and male reproductive success in Nile Tilapia (Oreochromis niloticus) in breeding hapas: a microsatellite analysis. Aquaculture 256:148–158

    Article  Google Scholar 

  • Fritsches KA, Marshall NJ, Warrant EJ (2003) Retinal specializations in the blue marlin—eyes designed for sensitivity to lower light levels. Mar Freshwater Res 54:333–341

    Article  Google Scholar 

  • Fryer G, Iles TD (1972) The cichlid fishes of the Great Lakes of Africa: their biology and evolution. TFH, Neptune City

    Google Scholar 

  • Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL (2009) The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol 7:12

    Article  CAS  Google Scholar 

  • Hofmann CM, O’Quin KE, Marshall NJ, Carleton KL (2010) The relationship between lens transmission and opsin gene expression in cichlids from Lake Malawi. Vis Res 50:357–363

    Google Scholar 

  • Hueter RE (1980) Physiological optics of the eye of the juvenile lemon shark (Negaprion brevirostris). MS Thesis, The University of Miami, Miami

  • Jordan R, Kellogg K, Juanes F, Howe D, Stauffer JR, Loew ER, Losey G (2004) Ultraviolet reflectivity in three species of Lake Malawi rock-dwelling cichlids. J Fish Biol 65:876–882

    Article  Google Scholar 

  • Jordan R, Kellogg K, Howe D, Juanes F, Stauffer JR, Loew ER (2006) Photopigment spectral absorbance in Lake Malawi cichlids. J Fish Biol 68:1291–1299

    Article  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  CAS  PubMed  Google Scholar 

  • Kocher TD, Conroy JA, McKaye KR, Stauffer JR, Lockwood SF (1995) Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Mol Phylogenet Evol 4:420–432

    Article  CAS  PubMed  Google Scholar 

  • Kröger RHH, Gislén A (2004) Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans. Vis Res 44:2129–2134

    Article  PubMed  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Lim C, Webster CD (eds) (2006) Tilapia: biology, culture and nutrition. Haworth, Binghamton

    Google Scholar 

  • Lisney TJ, Collin SP (2008) Retinal ganglion cell distribution and spatial resolving power in elasmobranchs. Brain Behav Evol 72:59–77

    Article  PubMed  Google Scholar 

  • Litherland L, Collin SP (2008) Comparative visual function in elasmobranchs: spatial arrangement and ecological correlates of photoreceptor and ganglion cell distributions. Vis Neurosci 25:549–561

    Article  PubMed  Google Scholar 

  • Locket NA (1997) Vertebrate photoreceptors. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer Academic, Dordrecht, pp 163–196

    Google Scholar 

  • Maan ME, Hofker KD, van Alphen JJM, Seehausen O (2006) Sensory drive in cichlid speciation. Am Nat 167:947–954

    Article  Google Scholar 

  • Matthiessen L (1880) Untersuchungen über den Aplanatismus und die Periscopie der Krystallinsen des Fischauges. Pfügers Arch Gesamate Physiol Menschen Tiere 21:287–307

    Article  Google Scholar 

  • Parry JW, Carleton KL, Spady T, Carboo A, Hunt DM, Bowmaker JK (2005) Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Curr Biol 15:1734–1739

    Article  CAS  PubMed  Google Scholar 

  • Rasband WS (1997–2009) Image J. US National Institutes of Health, Bethesda

    Google Scholar 

  • Seehausen O, Terai Y, Magalaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626

    Article  CAS  PubMed  Google Scholar 

  • Sivak JG (1976) The accommodative significance of the “ramp” retina of the eye of the stingray. Vis Res 16:531–534

    Article  CAS  PubMed  Google Scholar 

  • Sivak JG (1978) Optical characteristics of the eye of the spiny dogfish (Squalus acanthias). Rev Can Biol 37:209–217

    CAS  PubMed  Google Scholar 

  • Sivak JG (1990) Optic variability of the fish lens. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 63–80

    Google Scholar 

  • Spady TC, Parry JW, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL (2006) Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol Biol Evol 23:1538–1547

    Article  CAS  PubMed  Google Scholar 

  • Thorpe A, Douglas RH (1993) Spectral transmission and short-wave absorbing pigments in the fish lens—II. Effects of age. Vis Res 33:301–307

    Article  CAS  PubMed  Google Scholar 

  • van der Meer HJ, Anker GC (1984) Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Teleostei, Cichlidae). Neth J Zool 34:197–209

    Article  Google Scholar 

  • van der Meer HJ, Anker GC, Barel CDN (1995) Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Environ Biol Fish 44:115–132

    Article  Google Scholar 

  • Volpato GL, Luchiari AC, Duarte CRA, Barreto RE, Ramanzini GC (2003) Eye color as an indicator of social rank in the fish Nile Tilapia. Braz J Med Biol Res 36:1659–1663

    Article  CAS  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills

    Google Scholar 

  • Zaunreiter M, Junger H, Kotrschal K (1991) Retinal morphology of cyprnid fishes: a quantitative histological study of ontogenetic changes and interspecific variation. Vis Res 31:383–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Northern Tilapia Inc., Lindsay, Ontario, Canada for supplying the fish. This research was supported by an NSERC Discovery Grant and the Canada Research Chair program (CWH). TJL was supported by a post-doctoral stipend from the Carl Tryggers Foundation for Scientific Research during the analysis and write-up of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig W. Hawryshyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisney, T.J., Hawryshyn, C.W. Ocular dimensions and cone photoreceptor topography in adult Nile Tilapia Oreochromis niloticus . Environ Biol Fish 88, 369–376 (2010). https://doi.org/10.1007/s10641-010-9652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-010-9652-7

Keywords

Navigation