Skip to main content

Advertisement

Log in

Aptamers as a novel tool for diagnostics and therapy

  • REVIEW
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Aptamers are short single-stranded DNA or RNA oligonucleotides that are capable of binding small molecules, proteins, or nucleotides with high specificity. They show a stable conformation and high binding affinity for their target molecules. There are numerous applications for aptamers in biotechnology, molecular diagnostics and targeted therapy of diseases. Their production is cheap, and they generally display lower immunogenicity than monoclonal antibodies. In the present review, we give an introduction to the preparation of aptamers and provide examples for their use in biotechnology, diagnostics and therapy of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Förstermann U, Kleinert H (2009) Medizinische Gentechnologie und Gentherapie. In: Aktories K, Förstermann U, Hofmann FB, Starke K (eds) Allgemeine und spezielle Pharmakologie und Toxikologie. Elsevier GmbH, 10. Auflage, München, pp 24–35

    Google Scholar 

  2. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48:2672–2689

    Article  CAS  Google Scholar 

  3. Rehm H, Letzel T (2010) Der Experimentator – Proteinbiochemie/ Proteomics, 6th edn. Auflage, Heidelberg, p 314

    Book  Google Scholar 

  4. Collett JR, Cho EJ, Ellington AD (2005) Production and processing of aptamer microarrays. Methods 37:4–15

    Article  CAS  PubMed  Google Scholar 

  5. Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128:161–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 62:592–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Langer R (1998) Drug delivery and targeting. Nature 392(6679):5–10

    CAS  PubMed  Google Scholar 

  8. Wilson C, Szostak JW (1998) Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem Biol 5:609–617

    Article  CAS  PubMed  Google Scholar 

  9. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495

    Article  CAS  PubMed  Google Scholar 

  11. Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46:459–477

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Thompson KM, Syrett HA, Knudsen SM, Ellington AD (2002) Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2:21

    Article  PubMed Central  PubMed  Google Scholar 

  13. Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847

    Article  CAS  PubMed  Google Scholar 

  14. Suess B, Fink B, Berens C, Stentz R, Hillen W (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Laserson U, Gan HH, Schlick T (2005) Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs. Nucleic Acids Res 33:6057–6069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lee JH, Wernette DP, Yigit MV, Liu J, Wang Z, Lu Y (2008) Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem Int Ed 46:9006–9010

    Article  Google Scholar 

  17. Ulrich H, Wrenger C (2009) Disease-specific biomarker discovery by aptamers. Cytometry A 75:727–733

    Article  PubMed  Google Scholar 

  18. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    Article  CAS  PubMed  Google Scholar 

  19. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO 2nd, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797

    Article  CAS  PubMed  Google Scholar 

  21. Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12:25–33

    Article  CAS  PubMed  Google Scholar 

  22. Dausse E, Da Rocha GS, Toulmé JJ (2009) Aptamers: a new class of oligonucleotides in the drug discovery pipeline? Curr Opin Pharmacol 9:602–607

    Article  CAS  PubMed  Google Scholar 

  23. Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19:209–222

    Article  CAS  PubMed  Google Scholar 

  24. Leva S, Lichte A, Burmeister J, Muhn P, Jahnke B, Fesser D, Jeannette E, Burgstaller P, Klussmann S (2002) GnRH binding RNA and DNA spiegelmers: a novel approach toward GnRH antagonism. Chem Biol 9:351–359

    Article  CAS  PubMed  Google Scholar 

  25. Frauendorf C, Hausch F, Röhl I, Lichte A, Vonhoff S, Klussmann S (2003) Internal 32P-labeling of L-deoxyoligonucleotides. Nucleic Acids Res 31:e34

    Article  PubMed Central  PubMed  Google Scholar 

  26. Vater A (2004) Entwicklung eines Verfahrens zur Identifizierung kurzer hochaffiner RNA-Oligonukleotide am Beispiel von CGRP-antagonisierenden Spiegelmeren. Tenea Verlag, Berlin, pp 13–15

    Google Scholar 

  27. Jarosch F (2005) Automatisierte Verfahren zur Selektion kurzer RNA- und DNA-Spiegelmere. Tenea Verlag, Berlin, pp 12–16

    Google Scholar 

  28. Grisanti S (2008) Pegabtanib Macugen®. In: Bartz-Schmidt KU, Ziemssen F (eds) Intravitreale Pharmakotherapie-Moderne Medikamente und ihre Anwendung am Auge. Schattauer GmbH, Stuttgart, p 75

    Google Scholar 

  29. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852

    Article  CAS  PubMed  Google Scholar 

  30. Wlotzka B, Leva S, Eschgfäller B, Burmeister J, Kleinjung F, Kaduk C, Muhn P, Hess-Stumpp H, Klussmann S (2002) In vivo properties of an Anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci U S A 99:8898–8902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. http://www.ufz.de/index.php?de=14146

  32. Habermehl GG, Krebs HC, Hammann PE, Ternes W (2008) Naturstoffchemie, 3rd edn. Springer, Berlin, p 458

    Google Scholar 

  33. Eulberg D, Buchner K, Maasch C, Klussmann S (2005) Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 33:e45

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gold L, Walker JJ, Wilcox SK, Williams S (2012) Advances in human proteomics at high scale with the SOMAscan proteomics platform. Nat Biotechnol 29:543–539

    CAS  Google Scholar 

  35. Sinha J, Reyes SJ, Gallivan JP (2010) Reprogramming bacteria to seek and destroy an herbicide. Nat Chem Biol 6:464–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ilyas A, Asghar W, Allen PB, Duhon H, Ellington AD, Igbal SM (2012) Electrical detection of cancer biomarkers using aptamers with nanogap break junctions. Nanotechnology 23:275502

    Article  PubMed Central  PubMed  Google Scholar 

  37. Heintz A, Reinhardt GA (1996) Chemie und Umwelt, 4th edn. Aktualisierte und erweiterte Auflage, Braunschweig, p 217

    Book  Google Scholar 

  38. Schachat AP (2005) New treatments for age-related macular degeneration. Ophthalmology 112:531–532

    Article  PubMed  Google Scholar 

  39. Lee JH, Canny MD, De Erkenez A, Krilleke D, Ng YS, Shima DT, Pardi A, Jucker F (2005) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci USA 102:18902–18907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Clark DP, Pazdernik NJ (2009) Molekulare Biotechnologie-Grundlagen und Anwendungen. Spektrum Akademischer Verlag, Heidelberg, p 472

    Book  Google Scholar 

  41. Do DV, Haller JA, Adamis AP, Striata C, Nguyen QD, Shah SM, Joussen AM (2008) Anti-VEGF therapy as an emerging treatment for diabetic retinopathy. In: Duh, E. (Eds.) Diabetic retinopathy. Human Press, Springer Verlag, 406–407

  42. Ng EWM, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    Article  CAS  PubMed  Google Scholar 

  43. Moshfeghi AA, Puliafito CA (2005) Pegaptanib sodium for the treatment of neovascular age-related macular degeneration. Exp Opin Investig Drugs 14:671–682

    Article  CAS  Google Scholar 

  44. Zhou J, Rossi JJ (2010) Aptamer-targeted cell-specific RNA interference. Silence 1:4

    Article  PubMed Central  PubMed  Google Scholar 

  45. Zhou J, Bobbin ML, Burnett JC, Rossi JJ (2012) Current progress of RNA aptamer-based therapeutics. Front Genet 3:234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    CAS  PubMed  Google Scholar 

  47. Chu TC, Marks JW 3rd, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD (2006) Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992

    Article  CAS  PubMed  Google Scholar 

  48. Stecker JR, Savage AA, Bruno JG, Garcia DM, Koke JR (2012) Dynamics and visualization of MCF7 adenocarcinoma cell death by aptamer-C1q-mediated membrane attack. Nucleic Acid Ther 22:275–282

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Liu Z, Duan JH, Song YM, Ma J, Wang FD, Lu X, Yang XD (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Cao ZH, Tong R, Mishra A, Xu W, Wong GC, Cheng J, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498

    Article  CAS  Google Scholar 

  51. Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46:459–477

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Aulbert E, Disselhoff W, Sörje H, Schulz E, Gericke D (1980) Lysosomal accumulation of 67Ga-transferrin in malignant tumors in relation to their growth rate. Eur J Cancer 16:1217–1232

    Article  CAS  PubMed  Google Scholar 

  53. McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, Sullenger B, Gilboa E (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 118:376–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Gopinath SC (2008) Anti-coagulant aptamers. Thromb Res 122:838–847

    Article  CAS  PubMed  Google Scholar 

  55. Dobrovolsky AB, Titaeva EV, Khaspekova SG, Spiridonova VA, Kopylov AM, Mazurov AV (2009) Inhibition of thrombin activity with DNA-aptamers. Bull Exp Biol Med 148:33–36

    Article  CAS  PubMed  Google Scholar 

  56. Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94

    Article  CAS  PubMed  Google Scholar 

  57. Hwang B, Cho JS, Yeo HJ, Kim JH, Chung KM, Han K, Jang SK, Lee SW (2004) Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10:1277–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Nishikawa F, Funaji K, Fukuda K, Nishikawa S (2004) In vitro selection of RNA aptamers against the HCVNS3 helicase domain. Oligonucleotides 14:114–129

    Article  CAS  PubMed  Google Scholar 

  59. Fukuda K, Umehara T, Sekiya S, Kunio K, Hasegawa T, Nishikawa S (2004) An RNA ligand inhibits hepatitis C virus NS3 protease and helicase activities. Biochem Biophys Res Commun 325:670–675

    Article  CAS  PubMed  Google Scholar 

  60. Zhan LS, Zhuo HL, Wang HZ, Peng JC, Wang QL. Screening and characterization of aptamers of hepatitis C virus NS3 helicase. Prog Biochem Biophys 32: 245–250

  61. Hwang B, Lee SW (2005) Analysis of in vivo interaction of HCVNS3 protein and specific RNA aptamer with yeast three-hybrid system. J Microbiol Biotechnol 15:660–664

    CAS  Google Scholar 

  62. Romero-Lopez C, Barroso-del Jesus A, Puerta-Fernandez E, Berzal-Herranz A (2005) Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol Chem 386:183–190

    Article  CAS  PubMed  Google Scholar 

  63. Kikuchi K, Umehara T, Fukuda K, Kuno A, Hasegawa T, Nishikawa S (2005) A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III-IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res 33:683–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Bellecave P, Andreola ML, Ventura M, Tarrago-Litvak L, Litvak S, Astier-Gin T (2003) Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides 13:455–463

    Article  CAS  PubMed  Google Scholar 

  65. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  66. Bunka DH, Stockley PG (2006) Aptamers come of age - at last. Nat Rev Microbiol 4:588–596

    Article  CAS  PubMed  Google Scholar 

  67. Held DM, Kissel JD, Patterson JT, Nickens DG, Burke DH (2006) HIV-1 inactivation by nucleic acid aptamers. Front Biosci 11:89–112

    Article  CAS  PubMed  Google Scholar 

  68. Zhou J, Li H, Li S, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Wang J, Jiang H, Liu F (2000) In vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection. RNA 6:571–583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ylera F, Lurz R, Erdmann VA, Furste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 290:1583–1588

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Efferth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadioglu, O., Malczyk, A.H., Greten, H.J. et al. Aptamers as a novel tool for diagnostics and therapy. Invest New Drugs 33, 513–520 (2015). https://doi.org/10.1007/s10637-015-0213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0213-y

Keywords

Navigation