Skip to main content

Advertisement

Log in

Phase I study of tanespimycin in combination with bortezomib in patients with advanced solid malignancies

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose To determine the maximum tolerated dose (MTD) and characterize the dose-limiting toxicities (DLT) of tanespimycin when given in combination with bortezomib. Experimental design Phase I dose-escalating trial using a standard cohort “3+3” design performed in patients with advanced solid tumors. Patients were given tanespimycin and bortezomib twice weekly for 2 weeks in a 3 week cycle (days 1, 4, 8, 11 every 21 days). Results Seventeen patients were enrolled in this study, fifteen were evaluable for toxicity, and nine patients were evaluable for tumor response. The MTD was 250 mg/m2 of tanespimycin and 1.0 mg/m2 of bortezomib when used in combination. DLTs of abdominal pain (13 %), complete atrioventricular block (7 %), fatigue (7 %), encephalopathy (7 %), anorexia (7 %), hyponatremia (7 %), hypoxia (7 %), and acidosis (7 %) were observed. There were no objective responses. One patient had stable disease. Conclusions The recommended phase II dose for twice weekly 17-AAG and PS341 are 250 mg/m2 and 1.0 mg/m2, respectively, on days 1, 4, 8 and 11 of a 21 day cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528

    Article  CAS  Google Scholar 

  2. Trepel J et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8):537–549

    Article  CAS  Google Scholar 

  3. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772

    Article  CAS  Google Scholar 

  4. Whitesell L et al (1994) Inhibition of heat shock protein HSP90–pp 60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91(18):8324–8328

    Article  CAS  Google Scholar 

  5. Grenert JP et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272(38):23843–23850

    Article  CAS  Google Scholar 

  6. Sasaki K, Yasuda H, Onodera K (1979) Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J Antibiot (Tokyo) 32(8):849–851

    Article  CAS  Google Scholar 

  7. Supko JG et al (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36(4):305–315

    Article  CAS  Google Scholar 

  8. Schnur RC et al (1995) Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J Med Chem 38(19):3806–3812

    Article  CAS  Google Scholar 

  9. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42(4):273–279

    Article  CAS  Google Scholar 

  10. Goetz MP et al (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23(6):1078–1087

    Article  CAS  Google Scholar 

  11. Banerji U et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23(18):4152–4161

    Article  CAS  Google Scholar 

  12. Ramanathan RK et al (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin Cancer Res 11(9):3385–3391

    Article  CAS  Google Scholar 

  13. Nowakowski GS et al (2006) A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 12(20 Pt 1):6087–6093

    Article  CAS  Google Scholar 

  14. Ramanathan RK et al (2007) Phase I and pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with refractory advanced cancers. Clin Cancer Res 13(6):1769–1774

    Article  CAS  Google Scholar 

  15. Solit DB et al (2007) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 13(6):1775–1782

    Article  CAS  Google Scholar 

  16. Grem JL et al (2005) Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 23(9):1885–1893

    Article  CAS  Google Scholar 

  17. Heath EI et al (2008) A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res 14(23):7940–7946

    Article  CAS  Google Scholar 

  18. Solit DB et al (2008) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14(24):8302–8307

    Article  CAS  Google Scholar 

  19. Ronnen EA et al (2006) A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest New Drugs 24(6):543–546

    Article  CAS  Google Scholar 

  20. Pacey S et al (2012) A Phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma. Invest New Drugs 30(1):341–349

    Article  CAS  Google Scholar 

  21. Nguyen DM et al (1999) Sequence-dependent enhancement of paclitaxel toxicity in non-small cell lung cancer by 17-allylamino 17-demethoxygeldanamycin. J Thorac Cardiovasc Surg 118(5):908–915

    Article  CAS  Google Scholar 

  22. Nguyen DM et al (2001) Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg 72(2):371–378, discussion 378–9

    Article  CAS  Google Scholar 

  23. Munster PN et al. Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. See: E. A. Sausville, Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters, Clin. Cancer Res., 7: 2155–2158, 2001. Clin Cancer Res, 2001. 7(8): p. 2228–36

  24. Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271(37):22796–22801

    Article  CAS  Google Scholar 

  25. Neckers L, Schulte TW, Mimnaugh E (1999) Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs 17(4):361–373

    Article  CAS  Google Scholar 

  26. Mimnaugh EG et al (2004) Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 3(5):551–566

    CAS  PubMed  Google Scholar 

  27. Mimnaugh EG et al (2006) Endoplasmic reticulum vacuolization and valosin-containing protein relocalization result from simultaneous hsp90 inhibition by geldanamycin and proteasome inhibition by velcade. Mol Cancer Res 4(9):667–681

    Article  CAS  Google Scholar 

  28. Mitsiades CS et al (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107(3):1092–1100

    Article  CAS  Google Scholar 

  29. Aghajanian C et al (2002) A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8(8):2505–2511

    CAS  PubMed  Google Scholar 

  30. Ramalingam SS et al (2008) A phase I study of 17-allylamino-17-demethoxygeldanamycin combined with paclitaxel in patients with advanced solid malignancies. Clin Cancer Res 14(11):3456–3461

    Article  CAS  Google Scholar 

  31. Hamilton AL et al (2005) Proteasome inhibition with bortezomib (PS-341): a phase I study with pharmacodynamic end points using a day 1 and day 4 schedule in a 14-day cycle. J Clin Oncol 23(25):6107–6116

    Article  CAS  Google Scholar 

  32. Richardson PG et al (2010) Tanespimycin with bortezomib: activity in relapsed/refractory patients with multiple myeloma. Br J Haematol 150(4):428–437

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tse AN et al (2008) A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin Cancer Res 14(20):6704–6711

    Article  CAS  Google Scholar 

  34. Modi S et al (2007) Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 25(34):5410–5417

    Article  CAS  Google Scholar 

  35. Hubbard J et al (2010) Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Invest New Drugs 29(3):473–480

    Article  Google Scholar 

  36. Kaufmann SH et al (2011) Phase I and pharmacological study of cytarabine and tanespimycin in relapsed and refractory acute leukemia. Haematologica 96(11):1619–1626

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Erlichman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenk, E., Hendrickson, A.E.W., Northfelt, D. et al. Phase I study of tanespimycin in combination with bortezomib in patients with advanced solid malignancies. Invest New Drugs 31, 1251–1256 (2013). https://doi.org/10.1007/s10637-013-9946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-013-9946-7

Keywords

Navigation