Skip to main content

Advertisement

Log in

The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The fungal drug cordycepin (3-deoxyadenosine) is known to exert anti-tumor activities, preferentially by interfering with RNA synthesis. We have investigated the effect of cordycepin on human breast epithelial cell lines, ranging from non-malignant MCF10A cells to highly de-differentiated MDA-MB-435 cancer cells. Treatment of human breast cancer cells with cordycepin caused either apoptosis or persistent cell cycle arrest that was associated with reduced clonal growth of cordycepin-treated breast cancer cells. Highly de-differentiated breast cancer cell lines, such as MDA-MB-231 and MDA-MB-435, reacted more sensitive to cordycepin than less aggressive breast cancer cell lines (MCF7, T47D) or non-malignant breast epithelial cells (MCF10A), which poorly reacted to cordycepin. In cordycepin-sensitive breast cancer cells, a marked induction of the DNA damage response (DDR), including the phosphorylation of ATM, ATR, and histone γH2AX could be observed. These data indicate that cordycepin, which was believed to cause cancer cell death by inhibition of RNA synthesis, induces DNA double strand breaks in breast cancer cells. The genotoxic effect of cordycepin on breast cancer cells indicates a new mechanism of cordycepin-induced cancer cell death, and its activity against highly undifferentiated breast cancer cells provides a new perspective of how cordycepin may be used in the treatment of advanced breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Levi F, Bosetti C, Lucchini F, Negri E, La Vecchia C (2005) Monitoring the decrease in breast cancer mortality in Europe. Eur J Cancer Prev 14:497–502

    Article  PubMed  Google Scholar 

  3. Dawood S (2010) Triple-negative breast cancer: epidemiology and management options. Drugs 70:2247–58

    Article  PubMed  CAS  Google Scholar 

  4. Paterson RR (2008) Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69:1469–1495

    Article  PubMed  CAS  Google Scholar 

  5. Kodama EN, McCaffrey RP, Yusa K, Mitsuya H (2000) Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem Pharmacol 59:273–281

    Article  PubMed  CAS  Google Scholar 

  6. Yoshikawa N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2004) Antitumour activity of cordycepin in mice. Clin Exp Pharmacol Physiol 31:S51–3

    Article  PubMed  Google Scholar 

  7. Nakamura K, Konoha K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2005) Effect of cordycepin (3'-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo 19:137–141

    PubMed  CAS  Google Scholar 

  8. Chen LS, Stellrecht CM, Gandhi V (2008) RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells. Br J Haematol 140:682–391

    Article  PubMed  CAS  Google Scholar 

  9. Lee SJ, Moon GS, Jung KH, Kim WJ, Moon SK (2010) c-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem Toxicol 48:2772–2783

    Article  Google Scholar 

  10. Noh EM, Youn HJ, Jung SH, Han JH, Jeong YJ, Chung EY, Jung JY, Kim BS, Lee SH, Lee YR, Kim JS (2010) Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int J Mol Med 25:255–260

    PubMed  CAS  Google Scholar 

  11. Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, Lee JD, Yoo YH, Choi YH (2011) Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol In Vitro 25:817–824

    Article  PubMed  CAS  Google Scholar 

  12. Thomadaki H, Tsiapalis CM, Scorilas A (2005) Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol Chem 386(5):471–80

    Article  PubMed  CAS  Google Scholar 

  13. Kim H, Naura AS, Errami Y, Ju J, Boulares AH (2011) Cordycepin blocks lung injury-associated inflammation and promotes BRCA1-deficient breast cancer cell killing by effectively inhibiting PARP. Mol Med. doi:10.2119/molmed.2011.00032

  14. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  PubMed  CAS  Google Scholar 

  15. Miwa M, Masutani M (2007) PolyADP-ribosylation and cancer. Cancer Sci 98:1528–1535

    Article  PubMed  CAS  Google Scholar 

  16. Weil MK, Chen AP (2011) PARP inhibitor treatment in ovarian and breast cancer. Curr Probl Cancer 35:7–50

    Article  PubMed  Google Scholar 

  17. Plesca D, Mazumder S, Almasan A (2008) DNA damage response and apoptosis. Methods Enzymol 446:107–122

    Article  PubMed  CAS  Google Scholar 

  18. North TW, Cohen SS (1978) Erythro-9-(2-hydroxy-3-nonyl)adenine as a specific inhibitor of herpes simplex virus replication in the presence and absence of adenosine analogues. Proc Natl Acad Sci USA 75:4684–4688

    Article  PubMed  CAS  Google Scholar 

  19. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 608:1–22

    Article  PubMed  CAS  Google Scholar 

  20. Amar S, Roy V, Perez EA (2009) Treatment of metastatic breast cancer: looking towards the future. Breast Cancer Res Treat 114:413–422

    Article  PubMed  Google Scholar 

  21. Swain SM (2011) Chemotherapy: updates and new perspectives. Oncologist 16(Suppl 1):30–39

    Article  PubMed  Google Scholar 

  22. Pal SK, Childs BH, Pegram M (2011) Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 125:627–636

    Article  PubMed  CAS  Google Scholar 

  23. Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    Article  PubMed  CAS  Google Scholar 

  24. Riches LC, Lynch AM, Gooderham NJ (2008) Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 23:331–339

    Article  PubMed  CAS  Google Scholar 

  25. López-Contreras AJ, Fernandez-Capetillo O (2010) The ATR barrier to replication-born DNA damage. DNA Repair (Amst) 9:1249–1255

    Article  Google Scholar 

  26. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450

    Article  PubMed  CAS  Google Scholar 

  27. Carden CP, Yap TA, Kaye SB (2010) PARP inhibition: targeting the Achilles’ heel of DNA repair to treat germline and sporadic ovarian cancers. Current Opinion in Oncology 22:473–480

    Article  PubMed  CAS  Google Scholar 

  28. Turner N, Tutt A, Ashworth A (2011) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–819

    Article  Google Scholar 

  29. Rastelli F, Biancanelli S, Falzetta A, Martignetti A, Casi C, Bascioni R, Giustini L, Crispino S (2010) Triple-negative breast cancer: current state of the art. Tumori 96(6):875–88

    PubMed  Google Scholar 

  30. Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V (1995) Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 22(suppl 11):3–10

    PubMed  CAS  Google Scholar 

  31. Klenow H (1963) Formation of the mono-, di-, and triphosphate of cordycepin in Ehrlich ascites-tumor cells in vitro. Biochim Biophys Acta 76:347–353

    Article  PubMed  CAS  Google Scholar 

  32. Cory JG, Suhadolnik RJ, Resnick B, Rich MA (1965) Incorporation of cordycepin (3'-deoxyadenosine) into ribonucleic acid and deoxyribonucleic acid of human tumor cells. Biochim Biophys Acta 103:646–653

    Article  PubMed  CAS  Google Scholar 

  33. Wong YY, Moon A, Duffin R, Barthet-Barateig A, Meijer HA, Clemens MJ, de Moor CH (2010) Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem 285:2610–2621

    Article  PubMed  CAS  Google Scholar 

  34. Choi S, Lim MH, Kim KM, Jeon BH, Song WO, Kim TW (2011) Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol Appl Pharmacol 257:165–173

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Brüning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.J., Burger, P., Vogel, M. et al. The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Invest New Drugs 30, 1917–1925 (2012). https://doi.org/10.1007/s10637-012-9859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-012-9859-x

Keywords

Navigation