Skip to main content

Advertisement

Log in

The histone deacetylase inhibitor butyroyloxymethyl diethylphosphate (AN-7) protects normal cells against toxicity of anticancer agents while augmenting their anticancer activity

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) has been shown to synergize doxorubicin (Dox) anticancer activity while attenuating its cardiotoxicity. In this study we further explored the selectivity of AN-7’s action in several cancer and normal cells treated with anticancer agents. The cells studied were murine mammary 4T1, human breast T47D and glioblastoma U251 cancer cell lines, neonatal rat cardiomyocytes, cardiofibroblasts and astrocytes, and immortalized cardiomyocyte H9C2 cells. Cell death, ROS production and changes in protein expression were measured and in vivo effects were evaluated in Balb-c mice. AN-7 synergized Dox and anti-HER2 cytotoxicity against mammary carcinoma cells with combination indices of 0.74 and 0.79, respectively, while it protected cardiomyocytes against their toxicity. Additionally AN-7 protected astrocytes from Dox-cytoxicity. Cell-type specific changes in the expression of proteins controlling survival, angiogenesis and inflammation by AN-7 or AN-7+Dox were observed. In mice, the protective effect of AN-7 against Dox cardiotoxicity was associated with a reduction in inflammatory factors. In summary, AN-7 augmented the anticancer activity of Dox and anti-HER2 and attenuated their toxicity against normal cells. AN-7 modulation of c-Myc, thrombospondin-1, lo-FGF-2 and other proteins were cell type specific. The effects of AN-7, Dox and their combination were preserved in vivo indicating the potential benefit of combining AN-7 and Dox for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HDAC:

histone deacetylase

HDACI:

histone deacetylase inhibitor

HAT:

histone acetyltransferase

BA:

butyric acid

Dox:

doxorubicin

NAC:

N-acetyl–L-cysteine

DCF-DA:

2′,7′-dichlorofluorescencin diacetate

PI:

propidium iodide

MEA:

Median Effect Analysis

CI:

combination index

pH2AX:

phosphorylation of histone H2AX

DSBs:

double-strand breaks

lo-FGF-2:

fibroblast growth factor-2

TSP-1:

thrombospondin-1

HO-1:

heme oxigenase-1

SCF:

stem cell factor

CO:

carbon monoxide

TNF-α:

tumor necrosis factor-alpha

INF-γ:

interferon-gamma

HER2:

Human Epidermal growth factor Receptor 2

References

  1. Rosato RR, Grant S (2003) Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther 2:30–37

    PubMed  Google Scholar 

  2. Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, Epstein JA, Gruber PJ (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 22:3549–3560

    Article  PubMed  CAS  Google Scholar 

  3. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  PubMed  CAS  Google Scholar 

  4. Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15:3958–3969

    Article  PubMed  CAS  Google Scholar 

  5. Rephaeli A, Zhuk R, Nudelman A (2000) Prodrugs of butyric acid from bench to bedside: synthetic design, mechanisms of action, and clinical applications. Drug Dev Res 50:379–391

    Article  CAS  Google Scholar 

  6. Blank-Porat D, Gruss-Fischer T, Tarasenko N, Malik Z, Nudelman A, Rephaeli A (2007) The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett 256:39–48

    Article  PubMed  CAS  Google Scholar 

  7. Tarasenko N, Nudelman A, Tarasenko I, Entin-Meer M, Hass-Kogan D, Inbal A, Rephaeli A (2008) Histone deacetylase inhibitors: the anticancer, antimetastatic and antiangiogenic activities of AN-7 are superior to those of the clinically tested AN-9 (Pivanex). Clin Exp Metastasis 25:703–716

    Article  PubMed  CAS  Google Scholar 

  8. Rephaeli A, Entin-Meer M, Angel D, Tarasenko N, Gruss-Fischer T, Bruachman I, Phillips DR, Cutts SM, Haas-Kogan D, Nudelman A (2006) The selectivity and anti-metastatic activity of oral bioavailable butyric acid prodrugs. Investig New Drugs 24:383–392

    Article  CAS  Google Scholar 

  9. Chou TC (1991) The median-effect principle and the combination index for quantitation of synergism and antagonism. In: Chou TC, Rideeout DC (eds) Synergism and antagonism in chemotherapy. Academic, New York, pp 66–102

    Google Scholar 

  10. Rephaeli A, Waks-Yona S, Nudelman A, Tarasenko I, Tarasenko N, Phillips DR, Cutts S, Kessler-Icekson G (2007) Anticancer prodrugs of butyric acid and formaldehyde protect against doxorubicin induced cardiotoxicity. Br J Cancer 96:1667–1674

    Article  PubMed  CAS  Google Scholar 

  11. Engel D, Nudelman A, Levovich I, Gruss-Fischer T, Rephaeli A (2006) Mode of interaction between the HDAC inhibitor AN-7 and doxorubicin in MCF-7 and resistant MCF-7/Dx cell lines. J Cancer Res Clin Oncol 132:673–683

    Article  PubMed  CAS  Google Scholar 

  12. Nudelman A, Gnizi E, Katz Y, Azulai R, Cohen-Ohana M, Zhuk R, Sampson SR, Langzam L, Fibach E, Prus E, Pugach V, Rephaeli A (2001) Prodrugs of butyric acid (lll) novel derivatives possessing increased aqueous solubility and potential for treating cancer and blood diseases. Eur J Med Chem 36:63–74

    Article  PubMed  CAS  Google Scholar 

  13. Shalitin N, Friedman M, Schlesinger H, Barhum Y, Levy MJ, Schaper W, Kessler-Icekson G (1996) The effect of angiotensin II on myosin heavy chain expression in cultured myocardial cells. In Vitro Cell Dev Biol Anim 32:573–578

    Article  PubMed  CAS  Google Scholar 

  14. Murphy S (1990) Generation of astrocytes cultures from normal and neoplastic central nervous system. In: Conn P (ed) Methods in neurosciences, vol 2. Academic Press Inc, San Diego, pp 33–47

    Google Scholar 

  15. Rephaeli A, Gil-Ad I, Aharoni A, Tarasenko I, Tarasenko N, Geffen Y, Halbfinger E, Nisemblat Y, Weizman A, Nudelman A (2009) Gamma-aminobutyric acid amides of nortriptyline and fluoxetine display improved pain suppressing activity. J Med Chem 52:3010–3017

    Article  PubMed  CAS  Google Scholar 

  16. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  PubMed  CAS  Google Scholar 

  17. Shchors K, Evan G (2007) Tumor angiogenesis: cause or consequence of cancer? Cancer Res 67:7059–7061

    Article  PubMed  CAS  Google Scholar 

  18. Bikfalvi A, Klein S, Pintucci G (1997) Biological roles fibroblast growth factor-2. Endocr Rev 18:26–45

    Article  PubMed  CAS  Google Scholar 

  19. Lin CW, Shen SC, Hou WC, Yang LY, Chen YC (2008) Heme oxygenase-1 inhibits breast cancer invasion via suppressing the expression of matrix metalloproteinase-9. Mol Cancer Ther 7:1195–1206

    Article  PubMed  CAS  Google Scholar 

  20. Koneru S, Penumathsa SV, Thirunavukkarasu M, Vidavalur R, Zhan L, Singal PK, Engelman RM, Das DK, Maulik N (2008) Sidenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: role of VEGF/angiopoietin-1. J Cell Mol Med 12:265–2664

    Article  Google Scholar 

  21. Mito S, Ozono R, Oshima T, Yano Y, Watari Y, Yamamoto Y, Brydun A, Igarashi K, Yoshizumi M (2008) Myocardial protection against pressure overload in mice lacking Bach1, a transcriptional repressor of heme-oxygenase-1. Hypertension 51:1570–1577

    Article  PubMed  CAS  Google Scholar 

  22. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87:6624–6628

    Article  PubMed  CAS  Google Scholar 

  23. Klapper LN, Vaisman N, Hurwitz E, Pinkas-Kramarski R, Yarden Y, Sela M (1997) A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER-2 blocks crosstalk with growth factor receptors. Oncogene 14:2099–2109

    Article  PubMed  CAS  Google Scholar 

  24. Dubois NC, Adolphe C, Ehninger A, Wang RA, Robertson EJ, Trumpp A (2008) Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function. Development 135:2455–2465

    Article  PubMed  CAS  Google Scholar 

  25. Kim J-W, Gao P, Liu Y-C, Semenza GL, Dang CV (2007) Hypoxia-Inducible Factor 1 and dysregulated c-Myc cooperatively induce Vascular Endothelial Growth Factor and metabolic switches hexokinase 2 and pyruvate dehydrogenese kinase 1. Mol Cell Biol 27:7381–7393

    Article  PubMed  CAS  Google Scholar 

  26. Ements LA, Davidson NE (2003) The follow-up of breast cancer. Semin Oncol 30:338–348

    Article  Google Scholar 

  27. Jones AL, Barlow M, Barrett-Lee PJ, Canney PA, Gilmour IM, Robb SD, Plummer CJ, Wardley AM, Verrill MW (2009) Management of cardiac health in trastuzumab- treated patients with breast cancer: updated United Kingdom National Cancer Research Institute recommendations for monitoring. Br J Cancer 100:684–692

    Article  PubMed  CAS  Google Scholar 

  28. Zhao L, Eghbali-Webb M (2001) Release pro- and anti-angiogenic factors by human cardiac fibroblasts: effects on DNA synthesis and protection under hypoxia in human endothelial cells. Biochim Biophys Acta 1538:273–282

    Article  PubMed  CAS  Google Scholar 

  29. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H Oxidase 4 mediates Transforming growth factor-β1-indued differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    Article  PubMed  CAS  Google Scholar 

  30. Diwan A, Tran T, Misra A, Mann DL (2003) Inflammatory mediators and the failing heart: a translational approach. Curr Mol Med 3:161–182

    Article  PubMed  CAS  Google Scholar 

  31. Vanlangenakker N, Berghe TV, Krysko DV, Festjens N, Vandenabeele P (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8:207–220

    Article  PubMed  CAS  Google Scholar 

  32. Hori M, Nishida K (2009) Oxidative stress and left ventricular remodeling after myocardial infarction. Cardiovasc Res 81:457–464

    Article  PubMed  CAS  Google Scholar 

  33. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 35:839–843

    Article  Google Scholar 

  34. Margosio B, Rusnati M, Bonezzi K, Cordes BA, Annis D, Urbanati C, Givazzi R, Presta M, Ribatti D, Mosher DF, Taraboletti G (2008) Fibroblast growth factor-2 binding to the trombospondin-1 type III repeats, a novel antiangiogenic domain. Int J Biochem Cell Biol 40:700–709

    Article  PubMed  CAS  Google Scholar 

  35. Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Canc Biol 16:318–330

    Article  CAS  Google Scholar 

  36. Virag JAI, Rolle ML, Reece J, Hardouin S, Feigl EO, Murry CE (2007) Fibroblast growth factor-2 regulates myocardial infarct repair. Effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol 171:1431–1440

    Article  PubMed  CAS  Google Scholar 

  37. Gueron G, Siervi AD, Ferrando M, Salerno M, Luca PD, Elguero B, Meiss R, Navone N, Vazquez ES (2009) Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol Cancer Res 7:1745–1755

    Article  PubMed  CAS  Google Scholar 

  38. Otterbein LE, Bach FH, Alam J, Soares M, Lu HT, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428

    Article  PubMed  CAS  Google Scholar 

  39. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  PubMed  CAS  Google Scholar 

  40. Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, AA FIII, Kukreja RC (2005) HIF-1 activation postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289:H542–H548

    Article  PubMed  CAS  Google Scholar 

  41. Losordo DW, Demmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease: Part 1: angiogenic cytokines. Circulation 109:2487–2491

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. S. Dominitz for editorial assistance. This work was supported in part by grants from The Israel Cancer Association (Grant No 20092001, Israel); Teva Special Funds (Dr. A. Swartz) and The Marcus Center for Pharmaceutical and Medicinal Chemistry at Bar Ilan University, Ramat Gan, Israel. Nataly Tarasenko carried out this work as part of the requirements for a PhD degree from the Department of Hematology, Sackler School of Medicine, Tel-Aviv University, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada Rephaeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasenko, N., Kessler-Icekson, G., Boer, P. et al. The histone deacetylase inhibitor butyroyloxymethyl diethylphosphate (AN-7) protects normal cells against toxicity of anticancer agents while augmenting their anticancer activity. Invest New Drugs 30, 130–143 (2012). https://doi.org/10.1007/s10637-010-9542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9542-z

Keywords

Navigation