Skip to main content

Advertisement

Log in

Cytotoxicity in human cancer cells and mitochondrial dysfunction induced by a series of new copper(I) complexes containing tris(2-cyanoethyl)phosphines

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Over the last few years a lot of research has been done to develop novel metal-based anti-cancer drugs, with the aim of improving clinical effectiveness, reducing general toxicity, and broadening the spectrum of activity. The search for novel metal-based antitumour drugs other than Pt agents includes the investigation of the cytotoxic activity of copper(I/II) compounds. Among these copper agents, particular attention has been recently devoted to hydrophilic copper(I) species bearing phosphines because of their noteworthy stability in aqueous media together with their remarkable in vitro cytotoxic activity. In this study we report on the synthesis, characterization and cytotoxic assays of a series of Cu(I) complexes with tris(2-cyanoethyl)phosphine (PCN) and bis(2-cyanoethyl)phenylphosphine (PCNPh). They were prepared by reaction of [Cu(CH3CN)4]+ or CuX2 precursors with the pertinent phosphine in acetone or acetonitrile solutions producing compounds of the following formulation: [Cu(PCN)2]+ 2, [Cu(CH3CN)(PCN)]+ 3, [Cu(X)(PCN)] (X = Cl, 4; Br, 5), and [Cu(PCNPh)2]+ 6. The new copper(I) complexes were tested for their cytotoxic properties against a panel of several human tumour cell lines. Cellular copper uptake rate was correlated with cell growth inhibition in 2008 human ovarian cancer cells. Moreover, copper(I)-PCN complexes were evaluated for their ability to alter the most relevant mitochondrial pathophysiological parameters such as respiration, coupling, ATP-synthetase activity and membrane potential in isolated mitochondria. These data were correlated with changes in mitochondrial membrane potential and production of reactive oxygen species (ROS) in drug-treated 2008 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Cisplatin:

cis-diamminedichloroplatinum(II)

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

RF:

resistance factor

References

  1. Marzano C, Pellei M, Tisato F, Santini C (2009) Copper complexes as anticancer agents. Anti-Cancer Agents Med Chem 9:185–211

    CAS  Google Scholar 

  2. Taylor MR, Gabe EJ, Glusker JP, Minkin JA, Patterson AL (1966) The crystal structures of compounds with antitumour activity. 2-keto-3-ethoxybutyraldehyde bis(thiosemicarbazone) and its cupric complex. J Am Chem Soc 88:1845–1846

    Article  PubMed  CAS  Google Scholar 

  3. Crim JA, Petering HG (1967) The antitumour activity of Cu(II)KTS, the copper (II) chelate of 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone). Cancer Res 27:1278–1285

    PubMed  CAS  Google Scholar 

  4. Feun L, Modiano M, Lee K, Mao J, Marini A, Savaraj N, Plezia P, Almassian B, Colacino E, Fischer J, MacDonald S (2002) Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemother Pharmacol 50:223–229

    Article  PubMed  CAS  Google Scholar 

  5. Murugkar A, Unnikrishnan B, Padhye S, Bhonde R, Teat S, Triantafillou E, Sinn E (1999) Hormone anchored metal complexes. 1. Synthesis, structure, spectroscopy and in vitro antitumour activity of testosterone acetate thiosemicarbazone and its metal complexes. Met-Based Drugs 6:177–182

    Article  PubMed  CAS  Google Scholar 

  6. Berners-Price SJ, Mirabelli CK, Johnson RK, Mattern MR, McCabe FL, Faucette LF, Sung CM, Mong SM, Sadler PJ, Crooke ST (1986) In vivo antitumour activity and in vitro cytotoxic properties of bis[1, 2-bis(diphenylphosphino)ethane]gold(I) chloride. Cancer Res 46:5486–5493

    PubMed  CAS  Google Scholar 

  7. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 9:2467–2498

    Article  Google Scholar 

  8. Ho YP, Au-Yeung SCF, To KKW (2003) Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med Res Review 23:633–655

    Article  CAS  Google Scholar 

  9. Zhang CX, Lippard SJ (2003) New metal complexes as potential therapeutics. Curr Opin Chem Biol 7:481–489

    Article  PubMed  CAS  Google Scholar 

  10. Snyder RM, Mirabelli CK, Johnson RK, Sung CM, Faucette LF, McCabe FL, Zimmerman JP, Whitman M, Hempel JC, Crooke ST (1986) Modulation of the antitumour and biochemical properties of bis(diphenylphosphine)ethane with metals. Cancer Res 46:5054–5060

    PubMed  CAS  Google Scholar 

  11. Berners-Price SJ, Johnson RK, Mirabelli CK, Faucette LF, McCabe FL, Sadler PJ (1987) Copper(I) complexes with bidentate tertiary phosphine ligands: solution chemistry and antitumour activity. Inorg Chem 26:3383–3387

    Article  CAS  Google Scholar 

  12. Berners-Price SJ, Sadler PJ (1988) Phosphines and metal phosphine complexes: relationship of chemistry to anticancer and other biological activity. Struct Bonding 70:27–10

    CAS  Google Scholar 

  13. Marzano C, Gandin V, Pellei M, Colavito D, Papini G, Gioia Lobbia G, Del Giudice E, Porchia M, Tisato F, Santini C (2008) In Vitro antitumour activity of the water soluble copper(I) complexes bearing the tris(hydroxymethyl) phosphine Ligand. J Med Chem 51:798–808

    Article  PubMed  CAS  Google Scholar 

  14. Porchia M, Benetollo F, Refosco F, Tisato F, Marzano C, Gandin V (2009) Synthesis and structural characterization of copper(I) complexes bearing N-methyl-1, 3, 5-triaza-7-phosphaadamantane (mPTA). Cytotoxic activity evaluation of a series of water soluble Cu(I) derivatives containing PTA, PTAH and mPTA ligands. J Inorg Biochem 103:1644–1651

    Article  PubMed  CAS  Google Scholar 

  15. Marzano C, Pellei M, Colavito D, Alidori S, Lobbia GG, Gandin V, Tisato F, Santini C (2006) Synthesis, characterization, and in vitro antitumour properties of tris(hydroxymethyl)phosphine Copper(I) complexes containing the new bis(1, 2, 4-triazol-1-yl)acetate Ligand. J Med Chem 49:7317–7324

    Article  PubMed  CAS  Google Scholar 

  16. Marzano C, Pellei M, Alidori S, Brossa A, Lobbia GG, Tisato F, Santini C (2006) New copper(I) phosphane complexes of dihydrobis(3-nitro-1, 2, 4-triazolyl)borate ligand showing cytotoxic activity. J Inorg Biochem 100:299–304

    Article  PubMed  CAS  Google Scholar 

  17. Rauhut M, Hechenbleikner I, Currier HA, Schaefer FC, Wystrach VP (1959) The cyanoethylation of phosphine and phenylphosphine. J Am Chem Soc 81:1103–1107

    Article  CAS  Google Scholar 

  18. Vullo WJ (1966) Hydroxymethyl replacement reactions of tetrakis(hydroxymethyl) phosphonium chloride. Ind Eng Chem Prod Res Dev 5:346–349

    Article  CAS  Google Scholar 

  19. Chylewski C, Jan G, Kurzen R, Meier M, Schellemberg M (1977) Chem Abs 2651:125–353

    Google Scholar 

  20. Streuli CA (1960) Determination of basicity of substituted phosphines by nonaqueous titrimetry. Anal Chem 32:985–987

    Article  CAS  Google Scholar 

  21. Kosolapoff GM, Maier L (1972) In: Organic phosphorus compounds, Vol. 1. Wiley-Interscience, New York

  22. Blake AJ, McQuillan GP (1984) Structures, vibrational spectra, and ligand behaviour of tris(2-cyanoethyl)phosphine and its oxide, sulphide, and selenide. J Chem Soc Dalton Trans 1849–1855

  23. Mason MR, Verkade JG (1992) Fluoride-induced reduction of palladium(II) and platinum(II) phosphine complexes. Organometallics 11:2212–2220

    Article  CAS  Google Scholar 

  24. Aquino MAS, Macartney DH (1987) Axial-ligand substitution reactions of dirhodium(II) tetraacetate with phosphines and phosphites in acetonitrile. Inorg Chem 26:2696–2699

    Article  CAS  Google Scholar 

  25. Guy Orpen A, Pringle PG, Smith MB, Worboys K (1998) Synthesis and properties of new tris(cyanoethyl)phosphine complexes of platinum (0, II), palladium (0, II), iridium (I) and rhodium (I). Conformational analysis of tris(cyanoethyl)phosphine ligands. J Organomet Chem 550:255–266

    Article  Google Scholar 

  26. Liu CW, Pan H, Fackler Jr GP, Wu G, Wasylishen RE, Shang M (1995) Studies of [Ag(PPh3)2]NO3, [Ag{P(CH2CH2CN)3}2]NO3 and [Ag{P(C6H4Me–m)3}2]NO3 by X-ray diffraction and solid-state nuclear magnetic resonance. J Chem Soc Dalton Trans 3691–3697

  27. Khan NI, King C, Fackler GP Jr, Winpenny REP (1993) Syntheses and characterization of gold(I) and platinum(II) complexes containing tris(2-cyanoethyl)phosphine. X-ray crystal structures of [(CEP)2Au]Cl, cis-(CEP)(Et2S)PtCl2, and trans-(CEP)2PtCl2. Inorg Chem 32:2502–2505

    Article  CAS  Google Scholar 

  28. Al-Fayez S, Abdel-Rahman LH, Shemsi AM, Seddigi ZS, Fettouhi M (2007) Synthesis and Crystal Structures of Bromo(1, 10-phenanthroline-N, N)tris(2-cyanoethyl)phosphinocopper(I) and Bromo(2, 2¢-bipyridine-N, N¢)tris(2-cyanoethyl)phosphinocopper(I). J Chem Crystallogr 37:517–521

    Article  CAS  Google Scholar 

  29. Bowen RJ, Navarro M, Shearwood AM, Healy PC, Skelton BW, Filipovska A, Berners-Price SJ (2009) 1: 2 Adducts of copper(I) halides with 1, 2-bis(di-2-pyridylphosphino)ethane: solid state and solution structural studies and antitumour activity. Dalton Trans 28:10861–10870

    Article  Google Scholar 

  30. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30:708–749

    PubMed  CAS  Google Scholar 

  31. McKeage MJ, Berners-Price SJ, Galettis P, Bowen RJ, Brouwer W, Ding L, Zhuang L, Baguley BC (2000) Role of lipophilicity in determining cellular uptake and antitumour activity of gold phosphine complexes. Cancer Chemoter Pharmacol 46:343–350

    Article  CAS  Google Scholar 

  32. Braumann T (1986) Determination of hydrophobic parameters by reversed-phase liquid chromatography: theory, experimental techniques, and application in studies on quantitative structure-activity relationships 373:191–225

  33. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumour cell lines using a microculture tetrazolium assay. Cancer Res 48:589–601

    PubMed  CAS  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  35. Myers DK, Slater EC (1957) The enzymatic hydrolysis of adenosine triphosphate by rat liver mitochondria. I. Activities at different pH values. Biochem J 67:558–572

    PubMed  CAS  Google Scholar 

  36. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol 10:41–47

    Article  CAS  Google Scholar 

  37. Lehninger AL (1962) Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev 42:467–517

    PubMed  CAS  Google Scholar 

  38. Emaus RK, Grunwald R, Lemasters JL (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436–448

    Article  PubMed  CAS  Google Scholar 

  39. Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MP (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic Biol Med 42:872–881

    Article  PubMed  CAS  Google Scholar 

  40. Gandin V, Pellei M, et al. manuscript in preparation.

  41. Bragadin M, Manente S, Marton D, Cima F, Rigobello MP, Bindoli A (2003) The interaction of zinc pyrithione with mitochondria from rat liver and a study of the mechanism of inhibition of ATP synthesis. Appl Organomet Chem 17:869–874

    Article  CAS  Google Scholar 

  42. Sanghamitra NJ, Phatak P, Das S, Samuelson AG, Somasundaram K (2005) Mechanism of cytotoxicity of copper(I) complexes of 1, 2-bis(diphenylphosphino)ethane. J Med Chem 48:977–985

    Article  PubMed  CAS  Google Scholar 

  43. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    Article  PubMed  CAS  Google Scholar 

  44. Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Ministero dell’Istruzione dell’Università e della Ricerca (PRIN 20078EWK9B). We are grateful to CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici). The authors thank A. Moresco for elemental analyses and Dr. Bolzati for HPLC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Tisato.

Additional information

Zanella and Gandin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanella, A., Gandin, V., Porchia, M. et al. Cytotoxicity in human cancer cells and mitochondrial dysfunction induced by a series of new copper(I) complexes containing tris(2-cyanoethyl)phosphines. Invest New Drugs 29, 1213–1223 (2011). https://doi.org/10.1007/s10637-010-9466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9466-7

Keywords

Navigation