Skip to main content
Log in

Thioredxin reductase inhibitor ethaselen increases the drug sensitivity of the colon cancer cell line LoVo towards cisplatin via regulation of G1 phase and reversal of G2/M phase arrest

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

We evaluated the combination treatment of ethaselen (BBSKE) as a thioredoxin reductase (TrxR) inhibitor plus cisplatin (CDDP) on the human colon adenocarcinoma cell line LoVo. Therapeutic effects ranging from nearly additive to clearly synergistic demonstrated an effective combination, i.e., the cytostatic dose of CDDP could be reduced without a loss in efficacy. To further investigate the cellular response mechanisms of these favorable outcomes, we analyzed the cell-cycle profiles, mRNA expression patterns, and protein levels of several key genes after incubation with BBSKE or CDDP separately and in combination. In appropriate conditions, CDDP induced arrest at the G2/M phase accompanied by the enhanced inhibitory phosphorylation of Cdk1 and the elevated protein expression of cyclin B1. BBSKE downregulated expression of cyclin D1 by increasing mRNA and protein levels of p21, and thus induced G1 phase arrest. BBSKE returned Cdk1 to an activated state, and reduced the protein level of cyclin B1 after incubation in combination with CDDP, which was consistent with the reduction in the percentage of cells in G2/M identified by flow cytometry. By regulating the G1 phase and reversing CDDP-induced G2/M phase arrest, BBSKE increases drug sensitivity of LoVo cells toward CDDP, and probably provides a meaningful anticancer strategy for further clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ethaselen (BBSKE):

1, 2-[bis (1, 2-Benzisoselenazolone-3 (2H)-ketone)] ethane

Cisplatin (CDDP):

cis-diamminedichloroplatinum II

TrxR:

Thioredoxin reductase

Trx:

Thioredoxin

NADPH:

Nicotinamide adenine dinucleotide phosphate

CI:

Combination index

DRI:

Dose-reduction index

GAPDH:

Glyceraldehyde-3-phosphatedehydrogenase

COMB:

Combination

References

  1. Rosenberg B (1999) Platinum complexes for the treatment of cancer: Why the search goes on. In: Lippert B (ed) Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug. Wiley-VCH, Basel, pp 3–27

    Google Scholar 

  2. Yang D, Wang AH-J (1996) Structural studies of interactions between anticancer platinum drugs and DNA. Prog Biophys Mol Biol 66:81–111. doi:10.1016/S0079-6107(96)00017-X

    Article  PubMed  CAS  Google Scholar 

  3. Sorenson CM, Eastman A (1988) Influence of cis-Diamminedichloroplatinum(II) on DNA synthesis and cell cycle progression in excision repair proficient and deficient chinese hamster ovary cells. Cancer Res 48:6703–6707

    PubMed  CAS  Google Scholar 

  4. Aguda BD (1999) A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system. Proc Natl Acad Sci 96:11352–11357

    Article  PubMed  CAS  Google Scholar 

  5. Eastman A, Schulte N (1988) Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Biochemistry 27:4730–4734. doi:10.1021/bi00413a022

    Article  PubMed  CAS  Google Scholar 

  6. Bunch RT, Eastman A (1996) Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clin Cancer Res 2:791–797. doi:10.1016/S0079-6107(96)00017-X

    PubMed  CAS  Google Scholar 

  7. Fishel ML, Newell DR, Griffin RJ, Davison R, Wang L-Z, Curtin NJ et al (2005) Effect of Cell Cycle Inhibition on Cisplatin-Induced Cytotoxicity. J Pharmacol Exp Ther 312:206–213. doi:10.1124/jpet.104.073924

    Article  PubMed  CAS  Google Scholar 

  8. Arnér ESJ (1790) Focus on mammalian thioredoxin reductases—Important selenoproteins with versatile functions. Biochim Biophys Acta (BBA)—General Subjects 1790:495–526. doi:10.1016/j.bbagen.2009.01.014

    Article  Google Scholar 

  9. Powis G, Kirkpatrick DL (2007) Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol 7:392–397. doi:10.1016/j.coph.2007.04.003

    Article  PubMed  CAS  Google Scholar 

  10. Sasada T, Nakamura H, Ueda S, Sato N, Kitaoka Y, Gon Y et al (1999) Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II). Free Radic Biol Med 27:504–514. doi:10.1016/S0891-5849(99)00101-X

    Article  PubMed  CAS  Google Scholar 

  11. Zhao F, Yan J, Deng SJ, Lan LX, He F, Kuang B, Zeng HH (2006) A thioredoxin reductase inhibitor induces growth inhibition and apoptosis in five cultured human carcinoma cell lines. Cancer Lett 236:46–53. doi:10.1016/j.canlet.2005.05.010

    Article  PubMed  CAS  Google Scholar 

  12. Shi CJ, Yu LZ, Yang FG, Yan J, Zeng HH (2003) A novel organoselenium compound induces cell cycle arrest and apoptosis in prostate cancer cell lines. Biochem Biophys Res Commun 309:578–583. doi:10.1016/j.bbrc.2003.08.032

    Article  PubMed  CAS  Google Scholar 

  13. Peng ZF, Lan LX, Zhao F, Li J, Tan Q, Yin HW, Zeng HH (2008) A novel thioredoxin reductase inhibitor inhibits cell growth and induces apoptosis in HL-60 and K562 cells. J Zhejiang Univ Sci B 9:16–21. doi:10.1631/jzus.B071605

    Article  PubMed  CAS  Google Scholar 

  14. Deng SJ, Kuang B, Zhou X, Yan J, Zhao F, Jia XY, Zeng HH (2003) BBSKE, 1, 2-[bis(1, 2-benzisoselenazolone-3(2H)-ketone)] ethane, induced cell death in tumor cells. Beijing Da Xue Xue Bao 35:108–109

    CAS  Google Scholar 

  15. Xing FX, Li S, Ge X, Wang C, Zeng HH, Li D, Dong L (2008) The inhibitory effect of a novel organoselenium compound BBSKE on the tongue cancer Tca8113 in vitro and in vivo. Oral Oncol 44:963–969. doi:10.1016/j.oraloncology.2007.12.001

    Article  PubMed  CAS  Google Scholar 

  16. Wang YR, Xiao JJ, Dong XM, Meng SC, Deng SJ, Kuang B, Yan J, Zhao F, Zeng HH (2006) Immune regulating activity of a novel organoselenium compound ethaselen-1 in C57 /BL mice. Beijing Da Xue Xue Bao 38:634–639

    PubMed  CAS  Google Scholar 

  17. Lan LX, Zhao F, Wang Y, Zeng HH (2007) The mechanism of apoptosis induced by a novel thioredoxin reductase inhibitor in A549 cells: possible involvement of nuclear factor-κB- dependent pathway. Eur J Pharmacol 555:83–92. doi:10.1016/j.ejphar.2006.10.037

    Article  PubMed  CAS  Google Scholar 

  18. Tan Q, Li J, Yin H, Wang L, Tang W, Zhao F et al (2009) Augmented antitumor effects of combination therapy of cisplatin with ethaselen as a novel thioredoxin reductase inhibitor on human A549 cell in vivo. Invest New Drugs. Mar 7 [Epub ahead of print] doi: 10.1007/s10637-009-9235-7

  19. Chou T-C (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681. doi:10.1124/pr.58.3.10

    Article  PubMed  CAS  Google Scholar 

  20. Chou T-C, Martin N (2005) CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. CompuSyn, Paramus

    Google Scholar 

  21. Chou T-C, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  22. Chou T-C (2010) Drug combination studies and their synergy quantification using Chou-Talalay method. Cancer Res 70:440–446. doi:10.1158/0008-5472.CAN-09-1947

    Article  PubMed  CAS  Google Scholar 

  23. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Canc 9:153–67

    Article  CAS  Google Scholar 

  24. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414. doi:10.1038/nrc2657

    Article  PubMed  CAS  Google Scholar 

  25. Allen WL, Johnston PG (2005) Role of genomic markers in colorectal cancer treatment. J Clin Oncol 23:4545–4552. doi:10.1200/jco.2005.19.752

    Article  PubMed  CAS  Google Scholar 

  26. Labianca R, Pancera G, Cesana B (1988) Cisplatin + 5-fluorouracil versus 5-fluorouracil alone in advanced colorectal cancer: a randomized study. Eur J Cancer Clin Oncol 24:1579–1581

    Article  PubMed  CAS  Google Scholar 

  27. Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18:2938–2947

    PubMed  Google Scholar 

  28. Weijl N, Cleton F, Osanto S (1997) Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat Rev 23:209–240. doi:10.1016/S0305-7372(97)90012-8

    Article  PubMed  CAS  Google Scholar 

  29. Levine AJ (1997) P53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  30. Suganuma M, Kawabe T, Hori H, Funabiki T, Okamoto T (1999) Sensitization of cancer cells to DNA damage-induced cell death by specific cell cycle G2 checkpoint abrogation. Cancer Res 59:5887–5891

    PubMed  CAS  Google Scholar 

  31. Allday M, Inman G, Crawford D, Farrell P (1995) DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J 14:4994–5005

    PubMed  CAS  Google Scholar 

  32. Lau CC, Pardee AB (1982) Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc Natl Acad Sci 79:2942

    Article  PubMed  CAS  Google Scholar 

  33. Yamashita K, Yasuda H, Pines J et al (1990) Okadaic acid, a potent inhibitor of type I and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J 9:4331

    PubMed  CAS  Google Scholar 

  34. Yu Q, La Rose J, Zhang H, Takemura H, Kohn KW, Pommier Y (2002) UCN-01 inhibits p53 up-regulation and abrogates {gamma}-radiation-induced G2-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 62:5743–5748

    PubMed  CAS  Google Scholar 

  35. Sherr C (1994) G1 phase progression: cycling on cue. Cell 79:551–555

    Article  PubMed  CAS  Google Scholar 

  36. Sherr C, Roberts J (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Gene Dev 9:1149–1163. doi:10.1101/gad.9.10.1149

    Article  PubMed  CAS  Google Scholar 

  37. Waldman T, Kinzler KW, Vogelstein B (1995) p21 Is Necessary for the p53-mediated G1 Arrest in Human Cancer Cells. Cancer Res 55:5187–5190

    PubMed  CAS  Google Scholar 

  38. Olivier M, Theillet C (1996) Cell cycle responses to DNA damage in p53 wt cancer cell lines. Biology of the Cell 88:81. doi:10.1016/S0248-4900(97)86891-8

    Google Scholar 

  39. Porter LA, Donoghue DJ (2003) Cyclin B1 and CDK1: nuclear localization and upstream regulators In: Meijer L, Jézéquel A, Roberge M (ed) Progress in Cell Cycle Research, pp 335–47

  40. Stewart ZA, Pietenpol JA (2001) p53 signaling and cell cycle checkpoints. Chem Res Toxicol 14:243–263. doi:10.1021/tx000199t

    Article  PubMed  CAS  Google Scholar 

  41. Mack PC, Gandara DR, Lau AH, PN L, Edelman MJ, Gumerlock PH (2003) Cell cycle-dependent potentiation of cisplatin by UCN-01 in non-small-cell lung carcinoma. Cancer Chemother and Pharmacol 51:337–348. doi:10.1007/s00280-003-0571-6

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (grant number 30472036). We deeply appreciated the help of Professor Chou Ting-Chao (Preclinical Pharmacology Core Laboratory, Memorial Sloan–Kettering Cancer Center, New York, NY, USA) who donated the CompuSyn software and provided careful guidance on the drug combination study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-hui Zeng.

Additional information

Jia-ning Fu and Jing Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

(DOCX 15 kb)

Supplemental Figure 2

(DOCX 218 kb)

Supplemental Table 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Jn., Li, J., Tan, Q. et al. Thioredxin reductase inhibitor ethaselen increases the drug sensitivity of the colon cancer cell line LoVo towards cisplatin via regulation of G1 phase and reversal of G2/M phase arrest. Invest New Drugs 29, 627–636 (2011). https://doi.org/10.1007/s10637-010-9401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9401-y

Keywords

Navigation