Skip to main content
Log in

Potent anti-tumor activity of a macrocycle-quinoxalinone class pan-Cdk inhibitor in vitro and in vivo

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Deregulation of cell-cycle control is a hallmark of cancer. Thus, cyclin-dependent kinases (Cdks) are an attractive target for the development of anti-cancer drugs. Here, we report the biological characterization of a highly potent pan-Cdk inhibitor with a macrocycle-quinoxalinone structure. Compound M inhibited Cdk1, 2, 4, 5, 6, and 9 with equal potency in the nM range and was selective against kinases other than Cdks. This compound inhibited multiple events in the cell cycle in vitro, including retinoblastoma protein (pRb) phosphorylation, E2F-dependent transcription, DNA replication (determined by bromodeoxyuridine incorporation), and mitosis completion (assayed by flow cytometry) in the 10 nM range. Moreover, this compound induced cell death, as determined by induction of the subG1 fraction, activated caspase-3, and anexin V. In vivo, Compound M showed anti-tumor efficacy at a tolerated dose. In a nude rat xenograft tumor model, an 8-h constant infusion of Compound M inhibited pRb phosphorylation and induced apoptosis in tumor cells at ∼30 nM, which led to the inhibition of tumor growth. Immunosuppression was the only liability observed at this dose, but immune function returned to normal after 10 days. Suppression of pRb phosphorylation in tumor cells was clearly correlated with tumor cell growth inhibition and cell death in vitro and in vivo. In vivo, Compound M inhibited pRb phosphorylation in both tumor and gut crypt cells. Rb phosphorylation may be a suitable pharmacodynamic biomarker in both tumors and normal tissues for monitoring target engagement and predicting the efficacy of Compound M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Kobayashi M et al., manuscript in preparation

References

  1. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  PubMed  CAS  Google Scholar 

  2. Sherr CJ (2000) The Pezcoller lecture: cancer cell cycles revised. Cancer Res 60:3689–3695

    PubMed  CAS  Google Scholar 

  3. Pines J (1995) Cyclins ands cyclin-dependent kinases: theme and variations. Adv Cancer Res 66:181–212

    Article  PubMed  CAS  Google Scholar 

  4. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  5. Pavletich NP (1999) Mechanism of cyclin-dependent kinase regulation: structures of cdks, their cyclin activators, and CIP and INK4 inhibitors. J Mol Biol 287:821–828

    Article  PubMed  CAS  Google Scholar 

  6. Koepp DM, Haper JW, Elledge SJ (1999) How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97:431–434

    Article  PubMed  CAS  Google Scholar 

  7. Hall M, Peters G (1996) Genetic alterations of cyclins, cyclin-dependent kinases, and cdk inhibitors in human cancers. Adv Cancer Res 68:67–108

    Article  PubMed  CAS  Google Scholar 

  8. Knockaert M, Greengard P, Meijer L (2002) Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 23:417–425

    Article  PubMed  CAS  Google Scholar 

  9. Falco GD, Giordan A (1998) CDK9 (PITALRE): a multifunctional cdc2-related kinase. J Cell Physiol 177:501–506

    Article  PubMed  Google Scholar 

  10. Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20:2629–2634

    Article  PubMed  CAS  Google Scholar 

  11. Kobor MS, Greenblatt J (2002) Regulation of transcription elongation by phosphorylation. Biochim Biophys Acta 1577:261–275

    PubMed  CAS  Google Scholar 

  12. Dhavan R, Tsai L-H (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759

    Article  PubMed  CAS  Google Scholar 

  13. Lilja L, Yang S, Webb D, Juntti-Berggren L, Berggren P, Bark C (2001) Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 276:34199–34205

    Article  PubMed  CAS  Google Scholar 

  14. Hirai H, Kawanishi N, Iwasawa Y (2009) Recent advances in the development of selective small molecule inhibitors for cyclin-dependent kinases. Front Med Chem 4:347–370

    Google Scholar 

  15. Dickson MA, Schwartz GK (2009) Development of cell-cycle inhibitors for cancer therapy. Curr Oncol 16:36–43

    PubMed  CAS  Google Scholar 

  16. Byrd JC, Lin TS, Dalton JT, Wu D, Phelps MA, Fischer B, Moran M, Blum KA, Rovin B, Brooker-McEldiwney M, Broering S, Schaaf LJ, Johnson AJ, Lucas DM, Heerema NA, Lozanski G, Young DC, Suarez JR, Colevas AD, Grever MR (2007) Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 109:399–404

    Article  PubMed  CAS  Google Scholar 

  17. Phelps MA, Lin TS, Johnson AJ, Hurh E, Rozewski DM, Farley KL, Wu D, Blum KA, Fischer B, Mitchell SM, Moran ME, Brooker-McEldowney M, Heerema NA, Jarjoura D, Schaaf LJ, Byrd JC, Grever MR, Dalton JT (2009) Clinical response and pharmacokinetics from a phase I study of an active dosing schedule of flavopiridol in relapsed chronic lymphocytic leukemia. Blood 113:2637–2645

    Article  PubMed  CAS  Google Scholar 

  18. Burdette-Radoux S, Tozer RG, Lohmann RC, Quirt I, Ernst DS, Walsh W, Wainman N, Colevas AD, Eisenhauer EA (2004) Phase II trial of flavopiridol, a cyclin dependent kinase inhibitor, in untreated metastatic malignant melanoma. Invest New Drugs 22:315–322

    Article  PubMed  CAS  Google Scholar 

  19. Grendys EC Jr, Blessing JA, Burger R, Hoffman J (2005) A phase II evaluation of flavopiridol as second-line chemotherapy of endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 98:249–253

    Article  PubMed  CAS  Google Scholar 

  20. Dispenzieri A, Gertz MA, Lacy MQ, Geyer SM, Fitch TR, Fenton RG, Fonseca R, Isham CR, Ziesmer SC, Erlichman C, Bible KC (2006) Flavopiridol in patients with relapsed or refractory multiple myeloma: a phase II trial with clinical and pharmacodynamic end-points. Haematologica 91:390–393

    PubMed  CAS  Google Scholar 

  21. Benson C, White J, De Bono J, O’Donnell A, Raunaud F, Cruickshank C, McGrath H, Walton M, Workman P, Kaye S, Cassidy J, Gianella-Borradori A, Judson I, Twelves C (2007) A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer 96:29–37

    Article  PubMed  CAS  Google Scholar 

  22. Heath EI, Bible K, Martell RE, Adelman DC, Lorusso PM (2008) A phase I study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients with metastatic refractory solid tumors. Invest New Drugs 26:59–65

    Article  PubMed  CAS  Google Scholar 

  23. Kawanishi N, Sugimoto T, Shibata J, Nakamura K, Masutani K, Ikuta M, Hirai H (2006) Structure-based drug design of a highly potent CDK1,2,4,6 inhibitor with novel macrocyclic quinoxalin-2-one structure. Bioorg Med Chem Lett 16:5122–5126

    Article  PubMed  CAS  Google Scholar 

  24. Taya Y (1997) RB kinases and RB-binding proteins: new points of view. Trends Biochem Sci 22:14–17

    Article  PubMed  CAS  Google Scholar 

  25. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98:859–869

    Article  PubMed  CAS  Google Scholar 

  26. Malumbres M, Sotillo R, Santamaría D, Galan J, Cerezo A, Ortega S, Dubus P, Barbacid M (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504

    Article  PubMed  CAS  Google Scholar 

  27. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P (2003) Cdk2 knockout mice are viable. Curr Biol 13:1775–1785

    Article  PubMed  CAS  Google Scholar 

  28. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Takahashi-Suziki, I., Shimomura, T. et al. Potent anti-tumor activity of a macrocycle-quinoxalinone class pan-Cdk inhibitor in vitro and in vivo. Invest New Drugs 29, 534–543 (2011). https://doi.org/10.1007/s10637-009-9384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9384-8

Keywords

Navigation