Skip to main content
Log in

Novel herbal flavonoids promote apoptosis but differentially induce cell cycle arrest in human colon cancer cell

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses antitumorigenic property. We attempted to compare the anticarcinogenic mechanism of formononetin with that of the known proapoptotic flavonoid isoliquiritigenin (ISL) in human cancer cells. We first evaluated the effects of formononetin and ISL on HCT 116 colon cancer cell viability. Immunofluorescence staining was then performed to observe the morphological changes of cancer cells undergoing apoptosis, which had been substantiated using Annexin V-FITC/propidium iodide staining. Western immunoblotting and flow cytometry were also employed to study parameters associated with apoptosis and cell proliferation. Our data show that formononetin and ISL both inhibited the growth of colon cancer cells and promoted apoptosis. These processes were accompanied by caspase activation and downregulation of the antiapoptotic proteins Bcl-2 and Bcl-xL. Besides, the novel proapoptotic protein NSAID-activated gene (NAG-1) and its upstream regulator were overexpressed in drug-treated cells. Nevertheless, only ISL was found to induce a G2 arrest. These findings exemplify that both formononetin and ISL could cause growth inhibition and facilitate apoptosis in colon cancer cells, while only ISL is capable of inducing phase-specific cell cycle arrest. This suggests that the anticarcinogenic activities of different herbal flavonoids may involve both common and differential mechanisms of action, which could be developed as potential anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kuo SM (1997) Dietary flavonoids and cancer prevention: Evidence and potential mechanisms. Crit Rev Oncog 8:47–69

    CAS  PubMed  Google Scholar 

  2. Richter M, Ebermann R, Marian B (1999) Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr Cancer 34:88–99, doi:10.1207/S15327914NC340113

    Article  CAS  PubMed  Google Scholar 

  3. Kawabata K, Murakami A, Ohigashi H (2005) Nobiletin, a citrus flavonoid, down-regulates matrix metalloproteinase-7 (matrilysin) expression in HT-29 human colorectal cancer cells. Biosci Biotechnol Biochem 69:307–314, doi:10.1271/bbb.69.307

    Article  CAS  PubMed  Google Scholar 

  4. Shi RX, Ong CN, Shen HM (2004) Luteolin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells. Oncogene 23:7712–7721, doi:10.1038/sj.onc.1208046

    Article  CAS  PubMed  Google Scholar 

  5. Tin MMY, Cho CH, Chan K, James AE, Ko JKS (2007) Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft. Carcinogenesis 28:1347–1355, doi:10.1093/carcin/bgl238

    Article  CAS  PubMed  Google Scholar 

  6. Ma XQ, Shi Q, Duan JA, Dong TTX, Tsim KWK (2002) Chemical analysis of Radix Astragali (Huangq i) in China: a comparison with its adulterants and seasonal variations. J Agric Food Chem 50:4861–4866, doi:10.1021/jf0202279

    Article  CAS  PubMed  Google Scholar 

  7. Shen P, Liu MH, Ng TY, Chan YH, Yong EL (2006) Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARα, PPARγ, and adipocyte differentiation in vitro. J Nutr 136:899–905

    CAS  PubMed  Google Scholar 

  8. Vaya J, Belinky PA, Aviram M (1997) Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidant capacity toward LDL oxidation. Free Radic Biol Med 23:302–312, doi:10.1016/S0891-5849(97)00089-0

    Article  CAS  PubMed  Google Scholar 

  9. Dong TTX, Zhao KJ, Gao QT, Ji ZN, Zhu TT, Li J, Duan R, Cheung AWH, Tsim KWK (2006) Chemical and biological assessment of a Chinese herbal decoction containing Radix astragali and Radix angelicae sinensis: determination of drug ratio in having optimized properties. J Agric Food Chem 54:2767–2774, doi:10.1021/jf053163l

    Article  CAS  PubMed  Google Scholar 

  10. Roberts-Thomson SJ (2000) Peroxisome proliferator-activated receptors in tumorigenesis: targets of tumour promotion and treatment. Immunol Cell Biol 78:436–441, doi:10.1046/j.1440-1711.2000.00921.x

    Article  CAS  PubMed  Google Scholar 

  11. Auyeung KK, Liu P, Chan C, Wu W, Lee SS, Ko JKS (2008) Herbal isoprenols induce apoptosis in human colon cancer cells through transcriptional activation of PPARγ. Cancer Invest 26:708–717, doi:10.1080/07357900801898656

    Article  CAS  Google Scholar 

  12. Gupta RA, Dubois RN (2002) Controversy: PPARgamma as a target for treatment of colorectal cancer. Am J Physiol Gastrointest Liver Physiol 283:G266–G269

    CAS  PubMed  Google Scholar 

  13. Hsu Y, Kuo P, Lin C (2005) Isoliquiritigenin induces apoptosis and cell cycle arrest through p53-dependent pathway in Hep G2 cells. Life Sci 77:279–292, doi:10.1016/j.lfs.2004.09.047

    Article  CAS  PubMed  Google Scholar 

  14. Ma J, Fu NY, Pang DB, Wu WY, Xu AL (2001) Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med 67:754–757, doi:10.1055/s-2001-11533

    Article  CAS  PubMed  Google Scholar 

  15. Jung JI, Lim SS, Choi HJ, Cho HJ, Shin H, Kim EJ, Chung W, Park K, Park JHY (2006) Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J Nutr Biochem 17:689–696, doi:10.1016/j.jnutbio.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  16. Hsu Y, Kuo P, Chiang L, Lin C (2004) Isoliquiritigenin inhibits the proliferation and induces the apoptosis of human non-small cell lung cancer a549 cells. Clin Exp Pharmacol Physiol 31:414–418, doi:10.1111/j.1440-1681.2004.04016.x

    Article  CAS  PubMed  Google Scholar 

  17. Maggiolini M, Statti G, Vivacqua A, Gabriele S, Rago V, Loizzo M, Menichini F, Amdo S (2002) Estrogenic and antiproliferative activities of isoliquiritigenin in MCF7 breast cancer cells. J Steroid Biochem Mol Biol 82:315–322, doi:10.1016/S0960-0760(02)00230-3

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi T, Takasuka N, Ligo M, Baba M, Nishino H, Tsuda H, Okuyama T (2004) Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci 95:448–453, doi:10.1111/j.1349-7006.2004.tb03230.x

    Article  CAS  PubMed  Google Scholar 

  19. Baek SJ, Wilson LC, Eling TE (2002) Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23:425–434, doi:10.1093/carcin/23.3.425

    Article  CAS  PubMed  Google Scholar 

  20. Ko JKS, Leung WC, Ho WK, Chiu P (2007) Herbal diterpenoids induce growth arrest and apoptosis in colon cancer cells with increased expression of the nonsteroidal anti-inflammatory drug-activated gene. Eur J Pharmacol 559:1–13, doi:10.1016/j.ejphar.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  21. Baek SJ, Kim JS, Nixon JB, Di Augustine RP, Eling TE (2004) Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem 279:6883–6892, doi:10.1074/jbc.M305295200

    Article  CAS  PubMed  Google Scholar 

  22. Lin J, Dong HF, Oppenheim JJ, Howard OM (2003) Effects of astragali radix on the growth of different cancer cell lines. World J Gastroenterol 9(4):670–673

    PubMed  Google Scholar 

  23. Park J, Kim SH, Cho D, Kim TS (2005) Formononetin, a phyto-oestrogen, and its metabolites up-regulate interleukin-4 production in activated T cells via increased AP-1 DNA binding activity. Immunology 116(1):71–81, doi:10.1111/j.1365-2567.2005.02199.x

    Article  CAS  PubMed  Google Scholar 

  24. Nestel P, Fujii A, Zhang L (2007) An isoflavone metabolite reduces arterial stiffness and blood pressure in overweight men and postmenopausal women. Atherosclerosis 192:184–189, doi:10.1016/j.atherosclerosis.2006.04.033

    Article  CAS  PubMed  Google Scholar 

  25. Shen P, Liu MH, Ng TY, Chan YH, Yong EL (2006) Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro. J Nutr 136(4):899–905

    CAS  PubMed  Google Scholar 

  26. Huo Y, Guo C, Zhang QY, Chen WS, Zheng HC, Rahman K, Qin LP (2007) Antinociceptive activity and chemical composition of constituents from Caragana microphylla seeds. Phytomedicine 14(2-3):143–146, doi:10.1016/j.phymed.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  27. Ko JKS, Lam FYL, Cheung APL (2005) Amelioration of experimental colitis by Astragalus membranaceus through anti-oxidation and inhibition of adhesion molecule synthesis. World J Gastroenterol 11(37):5787–5794

    PubMed  Google Scholar 

  28. Jun M, Hong J, Jeong WS, Ho CT (2005) Suppression of arachidonic acid metabolism and nitric oxide formation by kudzu isoflavones in murine macrophages. Mol Nutr Food Res 49(12):1154–1159, doi:10.1002/mnfr.200500103

    Article  CAS  PubMed  Google Scholar 

  29. Ho PK, Hawkins CJ (2005) Mammalian initiator apoptotic caspases. FEBS J 272(21):5436–5453, doi:10.1111/j.1742-4658.2005.04966.x

    Article  CAS  PubMed  Google Scholar 

  30. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274(33):22932–22940, doi:10.1074/jbc.274.33.22932

    Article  CAS  PubMed  Google Scholar 

  31. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326, doi:10.1126/science.281.5381.1322

    Article  CAS  PubMed  Google Scholar 

  32. Chao DT, Korsmeyer SJ (1998) Bcl-2 family: regulators of cell death. Annu Rev Immunol 16:395–419, doi:10.1146/annurev.immunol.16.1.395

    Article  CAS  PubMed  Google Scholar 

  33. Iwashita K, Kobori M, Yamaki K, Tsushida T (2000) Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem 64:1813–1820, doi:10.1271/bbb.64.1813

    Article  CAS  PubMed  Google Scholar 

  34. Vermeulen K, van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131–149, doi:10.1046/j.1365-2184.2003.00266.x

    Article  CAS  PubMed  Google Scholar 

  35. Ford HL, Pardee AB (1998) The S phase: beginning, middle, and end: a perspective. J Cell Biol Suppl 30–31:1–7

    Google Scholar 

  36. O’Connell MJ, Cimprich KA (2005) G2 damage checkpoints: what is the turn-on? J Cell Sci 118(pt 1):1–6, doi:10.1242/jcs.01626

    Article  PubMed  Google Scholar 

  37. Walker DH, Maller JL (1991) Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354:314–317, doi:10.1038/354314a0

    Article  CAS  PubMed  Google Scholar 

  38. Borboule N, Baldin V, Jozan S, Vidal S, Valette A (1998) Increased level of p21 in human ovarian tumors is associated with increased expression of cdk2, cyclin A and PCNA. Int J Cancer 76:891–896, doi:10.1002/(SICI)1097-0215(19980610)76:6<891::AID-IJC20>3.0.CO;2-4

    Article  Google Scholar 

  39. Baek SJ, Kim JS, Moore SM, Lee SH, Martinez J, Eling TE (2004) Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene Egr-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol Pharmacol 67(2):356–364, doi:10.1124/mol.104.005108

    Article  PubMed  Google Scholar 

  40. Eling TE, Baek SJ, Shim M, Lee CH (2006) NSAID activated gene (NAG-1), a modulator of tumorigenesis. J Biochem Mol Biol 39(6):649–655

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the HKBU Faculty Research Grant FRG/07-08/II-02. The authors would like to thank Mr. Pak-Man Mak and Miss Wai-Yan Ho for their contributions to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Ka-Shun Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auyeung, K.KW., Ko, J.KS. Novel herbal flavonoids promote apoptosis but differentially induce cell cycle arrest in human colon cancer cell. Invest New Drugs 28, 1–13 (2010). https://doi.org/10.1007/s10637-008-9207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-008-9207-3

Keywords

Navigation