Skip to main content

Advertisement

Log in

Regression of Dalton’s lymphoma in vivo via decline in lactate dehydrogenase and induction of apoptosis by a ruthenium(II)-complex containing 4-carboxy N-ethylbenzamide as ligand

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

A novel ruthenium(II)-complex containing 4-carboxy N-ethylbenzamide (Ru(II)-CNEB) was found to interact with and inhibit M4-lactate dehydrogenase (M4-LDH), a tumor growth supportive enzyme, at the tissue level. The present article describes modulation of M4-LDH by this compound in a T-cell lymphoma (Dalton’s Lymphoma: DL) vis a vis regression of the tumor in vivo. The compound showed a dose dependent cytotoxicity to DL cells in vitro. When a non toxic dose (10 mg/kg bw i.p.) of Ru(II)-CNEB was administered to DL bearing mice, it also produced a significant decline in DL cell viability in vivo. The DL cells from Ru(II)-CNEB treated DL mice showed a significant decline in the level of M4-LDH with a concomitant release of this protein in the cell free ascitic fluid. A significant increase of nuclear DNA fragmentation in DL cells from Ru(II)-CNEB treated DL mice also coincided with the release of mitochondrial cytochrome c in those DL cells. Importantly, neither blood based biochemical markers of liver damage nor the normal patterns of LDH isozymes in other tissues were affected due to the treatment of DL mice with the compound. These results were also comparable with the effects of cisplatin (an anticancer drug) observed simultaneously on DL mice. The findings suggest that Ru(II)-CNEB is able to regress Dalton’s lymphoma in vivo via declining M4-LDH and inducing mitochondrial dysfunction–apoptosis pathway without producing any toxicity to the normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Clarke MJ (2003) Ruthenium metallopharamceuticals. Coord Chem Rev 236:209–233. doi:10.1016/S0010-8545(02)00312-0

    Article  CAS  Google Scholar 

  2. Mishra L, Singh AK, Trigun SK, Singh SK, Pandey SM (2004) Anti HIV and cytotoxic Ruthenium (II) complexes containing flavones: biochemical evaluation in mice. Indian J Exp Biol 42:660–666

    CAS  PubMed  Google Scholar 

  3. Kostova I (2006) Ruthenium complexes as anticancer agents. Curr Med Chem 13:1085–1107. doi:10.2174/092986706776360941

    Article  CAS  PubMed  Google Scholar 

  4. Keppler BK, Berger MR, Klenner T, Heim ME (1990) Metal complexes as antitumour agents. Adv Drug Res 19:243–310

    CAS  Google Scholar 

  5. Novakova O, Chen H, Vrana O, Rodger A, Sadler PJ, Brabee Y (2003) DNA interaction of mono functional organometallic Ru (II) anti tumor complexes in cell free media. Biochemistry 42:11544–11554. doi:10.1021/bi034933u

    Article  CAS  PubMed  Google Scholar 

  6. Dyson PJ, Sava G (2006) Metal based anti tumor drugs in the post genomic era. Dalton Trans 16:1929–1933. doi:10.1039/b601840h

    Article  PubMed  Google Scholar 

  7. Bergamo A, Sava G (2007) Ruthenium complexes can target determinants of tumour malignancy. Dalton Trans 13:1267–1272. doi:10.1039/b617769g

    Article  PubMed  Google Scholar 

  8. Christofk HR, Heiden MGV, Harris MH, Ramanathan A, Gerszten RE, Wei R et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233. doi:10.1038/nature06734

    Article  CAS  PubMed  Google Scholar 

  9. Bregman H, Carroll PJ, Meggers E (2006) Rapid access to unexplored chemical space by ligand scanning around a ruthenium center: discovery of potent and selective protein kinase inhibitors. J Am Chem Soc 128:877–884. doi:10.1021/ja055523r

    Article  CAS  PubMed  Google Scholar 

  10. Kim JW, Gardner LB, Dang CV (2005) Oncogenic alterations of metabolism and the Warburg effect. Drug Discov Today 2:233–238. doi:10.1016/j.ddmec.2005.04.001

    Article  Google Scholar 

  11. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology and tumour maintenance. Cancer Cell 9:425–434. doi:10.1016/j.ccr.2006.04.023

    Article  CAS  PubMed  Google Scholar 

  12. Kim JW, Dang CV (2006) Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930. doi:10.1158/0008-5472.CAN-06-1501

    Article  CAS  PubMed  Google Scholar 

  13. Kondoh H, Lleonart ME, Gil J, Beach D, Peters G (2005) Glycolysis and cellular immortalization. Drug Discov Today 2:263–267. doi:10.1016/j.ddmec.2005.05.001

    Article  CAS  Google Scholar 

  14. Gaber K (2006) Energy deregulation: licensing tumors to grow. Science 312:1158–1159. doi:10.1126/science.312.5777.1158

    Article  Google Scholar 

  15. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418. doi:10.1111/j.1742-4658.2007.05686.x

    Article  PubMed  Google Scholar 

  16. Maher C, Krishan JA, Lampidis TJ (2004) Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-d-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol 53:116–122. doi:10.1007/s00280-003-0724-7

    Article  CAS  PubMed  Google Scholar 

  17. Geschwind JF, Georgiades CS, Ko YH, Pedersen PL (2004) Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther 4:449–457. doi:10.1586/14737140.4.3.449

    Article  CAS  PubMed  Google Scholar 

  18. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621. doi:10.1158/0008-5472.CAN-04-4313

    Article  CAS  PubMed  Google Scholar 

  19. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732. doi:10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  20. Koukourakis M, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor associated stroma. Cancer Res 66:632–637. doi:10.1158/0008-5472.CAN-05-3260

    Article  CAS  PubMed  Google Scholar 

  21. Koukourakis M, Giatromanolaki A, Sivridis E (2003) Lactate dehydrogenase isoenzymes 1 and 5: differential expression by neoplastic and stromal cells in non-small cell lung cancer and other epithelial malignant tumors. Tumour Biol 24:199–202. doi:10.1159/000074430

    Article  CAS  PubMed  Google Scholar 

  22. Jaroszewski JW, Kaplan O, Cohen JS (1990) Action of gossypol and rhodamine 123 on wild-type and multidrug-resistant MCF-7 human breast cancer cells: 31P nuclear magnetic resonance and toxicity studies. Cancer Res 50:6936–6943

    CAS  PubMed  Google Scholar 

  23. Coyle T, Levante S, Shetler M, Wintield J (1994) In vitro and in vivo cytotoxicity of gossypol against central nervous system tumor cell lines. J Neurooncol 19:25–35. doi:10.1007/BF01051046

    Article  CAS  PubMed  Google Scholar 

  24. Trigun SK, Koiri RK, Mishra L, Dubey S, Singh S, Pandey P (2007) Ruthenium complex as enzyme modulator: modulation of lactate dehydrogenase by a novel ruthenium(II) complex containing 4-carboxy N-ethylbenzamide as a ligand. Curr Enzym Inhib 3:243–253. doi:10.2174/157340807781369010

    Article  CAS  Google Scholar 

  25. Sullivan BP, Salmon DJ, Meyer T (1978) Mixed phosphine 2,2′-bipyridine complexes of ruthenium. Inorg Chem 17:3334–3341. doi:10.1021/ic50190a006

    Article  CAS  Google Scholar 

  26. Prasad SB, Giri A (1999) Effect of cisplatin on the lactate dehydrogenase activity and its isozyme pattern in Dalton's lymphoma bearing mice. Cytologia (Tokyo) 64:259–267

    CAS  Google Scholar 

  27. Pathak C, Vinayak M (2005) Modulation of lactate dehydrogenase isozymes by modified base queuine. Mol Biol Rep 32:191–196. doi:10.1007/s11033-004-6941-2

    Article  CAS  PubMed  Google Scholar 

  28. Sellins KS, Cohen JJ (1987) Gene induction by γ-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    CAS  PubMed  Google Scholar 

  29. Kuo CL, Chou CC, Yung BY (1995) Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells. Cancer Lett 93:193–200. doi:10.1016/0304-3835(95)03809-B

    Article  CAS  PubMed  Google Scholar 

  30. Pandey P, Singh SK, Trigun SK (2005) Fructose-2, 6-bisphosphate associated regulatory enzymes develop in concordance in mice brain during early postnatal life. Neurol Psychiatry Brain Res 12:69–74

    Google Scholar 

  31. Wang H (2000) Over expression of L-PhGPx in MCF-7 cells. In: The role of mitochondrial phospholipids hydroperoxide glutathione peroxide in cancer therapy, Ph.D. thesis, The University of Iowa, Iowa. 2000, pp 16–56

  32. Koiri RK, Trigun SK, Dubey SK, Singh S, Mishra L (2008) Metal Cu(II) and Zn(II) bipyridyls as inhibitors of lactate dehydrogenase. Biometals 21:117–126. doi:10.1007/s10534-007-9098-3

    Article  CAS  PubMed  Google Scholar 

  33. Singh S, Koiri RK, Trigun SK (2008) Acute and chronic hyperammonemia modulate antioxidant enzymes differently in cerebral cortex and cerebellum. Neurochem Res 33:103–113. doi:10.1007/s11064-007-9422-x

    Article  CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  35. Parajuli P, Singh SM (1996) Alteration of IL-1 and arginase activity of tumor-associated macrophages: a role in the promotion of tumor growth. Cancer Lett 107:249–256. doi:10.1016/0304-3835(96)04378-9

    Article  CAS  PubMed  Google Scholar 

  36. Prasad SB, Giri A (1994) Antitumor effect of cisplatin against murine ascites Dalton’s lymphoma. Indian J Exp Biol 32:155–162

    CAS  PubMed  Google Scholar 

  37. Khynriam D, Prasad SB (2003) Cisplatin-induced genotoxic effects and endogenous glutathione levels in mice bearing ascites Dalton’s lymphoma. Mutat Res 526:9–18. doi:10.1016/S0027-5107(03)00005-8

    CAS  PubMed  Google Scholar 

  38. Sava G, Pacor S, Bergamo A, Cocchietto M, Mestroni G, Alessio E (1995) Effects of ruthenium complexes on experimental tumors: irrelevance of cytotoxicity for metastasis inhibition. Chem Biol Interact 95:109–126. doi:10.1016/0009-2797(94)03350-1

    Article  CAS  PubMed  Google Scholar 

  39. Stefanini M (1985) Enzymes, isozymes, and enzyme variants in the diagnosis of cancer. A short review. Cancer 55:1931–1936. doi:10.1002/1097-0142(19850501)55:9<1931::AID-CNCR2820550917>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  40. Rudnicki M, Oliveira MR, Pereira TV, Reginatto FH, Pizzol DF, Moreira JCF (2007) Antioxidant and antiglycation properties of Passiflora alata and Passiflora edulis extracts. Food Chem 100:719–724. doi:10.1016/j.foodchem.2005.10.043

    Article  CAS  Google Scholar 

  41. Giraldi T, Sava G, Bertoli G, Mestroni G, Zassinovich G (1977) Antitumor action of two rhodium and ruthenium complexes in comparison with cis-Diamminedichloroplatinum(II). Cancer Res 37:2662–2666

    CAS  PubMed  Google Scholar 

  42. Ajith TA, Janardhanan KK (2003) Cytotoxic and antitumor activities of a polypore macrofungus, Phellinus rimosus (Berk) Pilat. J Ethnopharmacol 84:157–162. doi:10.1016/S0378-8741(02)00292-1

    Article  CAS  PubMed  Google Scholar 

  43. Christina AJM, Joseph GD, Packialakshmi M, Kothai R, Robert SJH, Chidambaranathan N et al (2004) Anticarcinogenic activity of Withania somnifera Dunal against Dalton’s ascitic lymphoma. J Ethnopharmacol 93:359–361. doi:10.1016/j.jep.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  44. Nicholson DW (1996) From the bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–816. doi:10.1038/35037747

    Article  Google Scholar 

  45. Kuwahara D, Tsutsumi K, Kobayashi T, Hasunuma T, Nishioka K (2000) Caspace-9 regulates cisplatin-induced apoptosis in human head and neck squamous cell carcinoma cells. Cancer Lett 148:65–71. doi:10.1016/S0304-3835(99)00315-8

    Article  CAS  PubMed  Google Scholar 

  46. Gaiddon C, Jeannequin P, Bischoff P, Pferrer M, Sirlin C, Loeffler JP (2005) Ruthenium (II)-derived organometallic compounds induce cytostatic and cytotoxic effects on mammalian cancer cell lines through p53-dependent and p53-independent mechanisms. J Pharmacol Exp Ther 315:1403–1411. doi:10.1124/jpet.105.089342

    Article  CAS  PubMed  Google Scholar 

  47. Jiang X, Wang X (2004) Cytochrome c mediated apoptosis. Annu Rev Biochem 73:87–106. doi:10.1146/annurev.biochem.73.011303.073706

    Article  CAS  PubMed  Google Scholar 

  48. López-Lázaro M (2007) Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Expert Opin Ther Targets 11:1043–1053. doi:10.1517/14728222.11.8.1043

    Article  PubMed  Google Scholar 

  49. Pederson PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:198–274

    Google Scholar 

  50. Hockenbery DM, Oltavi ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251. doi:10.1016/0092-8674(93)80066-N

    Article  CAS  PubMed  Google Scholar 

  51. Forastiere A (1994) Overview of platinum chemotherapy in head and neck cancer. Semin Oncol 21:20–27

    CAS  PubMed  Google Scholar 

  52. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279. doi:10.1038/sj.onc.1206933

    Article  CAS  PubMed  Google Scholar 

  53. Khalaila I, Bergamo A, Bussy F, Sava G, Dyson PJ (2006) The role of cisplatin and NAMI-A plasma–protein interactions in relation to combination therapy. Int J Oncol 29:261–268

    CAS  PubMed  Google Scholar 

  54. Fraiser LH, Kanekal S, Kehrer JP (1991) Cyclophosphamide toxicity. Characterizing and avoiding the problem. Drugs 42:781–795

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was financially supported by a project from Department of Biotechnology (DBT), Govt. of India, (BT/PR5910/BRB/10/406/2005) sanctioned jointly to LM and SKT. The authors are thankful to UGC Centre of Advanced Studies programme to Department of Zoology, BHU, for providing infrastructural facilities. The help extended by Mr. S. Bhattacharyya, Ms. S. Srivastav, and Ms. B. Mishra is also acknowledged.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra K. Trigun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koiri, R.K., Trigun, S.K., Mishra, L. et al. Regression of Dalton’s lymphoma in vivo via decline in lactate dehydrogenase and induction of apoptosis by a ruthenium(II)-complex containing 4-carboxy N-ethylbenzamide as ligand. Invest New Drugs 27, 503–516 (2009). https://doi.org/10.1007/s10637-008-9202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-008-9202-8

Keywords

Navigation