Skip to main content

Advertisement

Log in

N-benzoxazol-2-yl-N′-1-(isoquinolin-3-yl-ethylidene)-hydrazine, a novel compound with antitumor activity, induces radicals and dissipation of mitochondrial membrane potential

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The novel compound N-benzoxazol-2-yl-N′-1-(isoquinolin-3-yl-ethylidene)-hydrazine (EPH136) has been shown to exhibit antitumor activity in vitro and in vivo. A COMPARE analysis showed that the patterns of cellular effects of EPH136 are not related to any of 175 standard antitumor agents with a known mechanism of action. In order to help identify the mechanism of action we employed a bioinformatics approach called partial least squares modelling in latent variables in which the expression levels of ~8,000 genes in each of 56 untreated NCI panel cell lines were correlated with the respective IC50 values of each cell line following treatment with EPH136. The 60 genes found to be most important for the antiproliferative effect of EPH136 are involved in nucleoside, nucleotide, nucleic acid binding and metabolism, developmental processes, protein modification and metabolism. In addition, using a DNA microarray we measured the expression of ~5,000 known genes following treatment of HT-29 colon carcinoma cells with a two-fold IC50 concentration of EPH136. The genes that were up-regulated more than two-fold compared to untreated controls belong to the same classes as found by the bioinformatic approach. Many of these proteins are regulated by oxidation/reduction and so we concluded that formation of radicals may be involved in the mechanism of action. We show here that EPH136 leads to generation of oxygen radicals, swelling of mitochondria and dissipation of the mitochondrial membrane potential. The antiproliferative activity of EPH136 was prevented by the radical scavenger N-acetylcysteine. Cells with elevated glutathione exhibited resistance to EPH136. In summary, the mechanism of the novel experimental anticancer drug EPH136 is generation of radicals and dissipation of the mitochondrial membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mauro MJ, O’Dwyer M, Heinrich MC, Druker BJ (2002) STI571: a paradigm of new agents for cancer therapeutics. J Clin Oncol 20(1):325–334 doi:10.1200/JCO.20.1.325

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J (2001) Angiogenesis-dependent diseases. Semin Oncol 28(6):536–542 doi:10.1016/S0093-7754(01)90021-1

    Article  CAS  PubMed  Google Scholar 

  3. Lothstein L, Israel M, Sweatman TW (2000) Anthracycline drug targeting: cytoplasmic versus nuclear—a fork in the road. Drug Resist Updat 14:169–177

    Google Scholar 

  4. Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T et al (2000) Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356(9243):1728–1733 doi:10.1016/S0140-6736(00)03207-4

    Article  CAS  PubMed  Google Scholar 

  5. Yuen AR, Halsey J, Lum B, Fisher G, Holmlund JT, Geary R et al (1999) Phase I study of an antisense oligonucleotide to protein kinase C-α, (ISIS 3521/CGP64128A) in patients with cancer. Clin Cancer Res 5(11):3357–3363

    CAS  PubMed  Google Scholar 

  6. Easmon J, Heinisch G, Hofmann J, Langer T, Grunicke HH, Fink J et al (1997) Thiazoyl and benzothiazoyl hydrazones derived from α-(N)-acetylpyridines and diazines: synthesis, antiproliferative activity, and CoMFA studies. Eur J Med Chem 32:397–408 doi:10.1016/S0223-5234(97)81677-7

    Article  CAS  Google Scholar 

  7. Easmon J, Heinisch G, Pürstinger G, Langer T, Österreicher JK, Grunicke HH et al (1997) Azinyl and diazinyl hydrazones derived from aryl N-heteroaryl ketones: synthesis and antiproliferative activity. J Med Chem 40(26):4420–4425 doi:10.1021/jm970255w

    Article  CAS  PubMed  Google Scholar 

  8. Easmon J, Puerstinger G, Roth T, Fiebig HH, Jenny M, Jaeger W et al (2001) Benzoxazolyl and 2-benzimidazolyl hydrazones derived from 2-acetylpyridine: a novel class of antitumor agents. Int J Cancer 94(1):89–96 doi:10.1002/ijc.1427

    Article  CAS  PubMed  Google Scholar 

  9. Easmon J, Puerstinger G, Heinisch G, Hofmann J (2006) Synthesis, structure-activity relationships, and antitumor studies of 2-benzoxazolyl hydrazones derived from alpha-(N)-acyl heteroaromatics. J Med Chem 49(21):6343–6350 doi:10.1021/jm060232u

    Article  CAS  PubMed  Google Scholar 

  10. Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L et al (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 81(14):1088–1092 doi:10.1093/jnci/81.14.1088

    Article  CAS  PubMed  Google Scholar 

  11. Weinstein JN, Kohn KW, Grever MR, Viswanadhan VN, Rubinstein LV, Monks AP et al (1992) Neural computing in cancer drug development: predicting mechanism of action. Science 258(5081):447–451 doi:10.1126/science.1411538

    Article  CAS  PubMed  Google Scholar 

  12. Musumarra G, Condorelli DF, Costa AS, Fichera M (2001) A multivariate insight into the in vitro antitumour screen database of the National Cancer Institute: classification of compounds, similarities among cell lines and the influence of molecular targets. J Comput Aided Mol Des 15(3):219–234 doi:10.1023/A:1008171426412

    Article  CAS  PubMed  Google Scholar 

  13. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L et al (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24(3):236–244 doi:10.1038/73439

    Article  CAS  PubMed  Google Scholar 

  14. Musumarra G, Condorelli DF, Scire S, Costa AS (2001) Shortcuts in genome-scale cancer pharmacology research from multivariate analysis of the National Cancer Institute gene expression database. Biochem Pharmacol 62(5):547–553 doi:10.1016/S0006-2952(01)00711-0

    Article  CAS  PubMed  Google Scholar 

  15. Wold S (1998) PLS in Chemistry. In: Schleyer PVR (ed) The encyclopedia of computational chemistry. Wiley, Chichester, pp 2006–2020

    Google Scholar 

  16. Barresi V, Fortuna CG, Garozzo R, Musumarra G, Scirè S, Condorelli DF (2006) Identification of genes involved in the sensitivity to antitumour drug 17-allylamino,17-demethoxygeldanamycin (17AAG). Mol Biosyst 2(5):231–239 doi:10.1039/b518093g

    Article  CAS  PubMed  Google Scholar 

  17. Zembutsu H, Ohnishi Y, Tsunoda T, Furukawa Y, Katagiri T, Ueyama Y et al (2002) Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res 62(2):518–527

    CAS  PubMed  Google Scholar 

  18. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139(2):271–279 doi:10.1016/0022-1759(91)90198-O

    Article  CAS  PubMed  Google Scholar 

  19. Weiss G, Fuchs D, Hausen A, Reibnegger G, Werner ER, Werner-Felmayer G et al (1993) Neopterin modulates toxicity mediated by reactive oxygen and chloride species. FEBS Lett 321(1):89–92 doi:10.1016/0014-5793(93)80627-7

    Article  CAS  PubMed  Google Scholar 

  20. Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ Jr, Kohn KW et al (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275(5298):343–349 doi:10.1126/science.275.5298.343

    Article  CAS  PubMed  Google Scholar 

  21. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235 doi:10.1038/73432

    Article  CAS  PubMed  Google Scholar 

  22. Rao GN (2000) Oxidant stress stimulates phosphorylation of eIF4E without an effect on global protein synthesis in smooth muscle cells. Lack of evidence for a role of H202 in angiotensin II-induced hypertrophy. J Biol Chem 275(22):16993–16999 doi:10.1074/jbc.275.22.16993

    Article  CAS  PubMed  Google Scholar 

  23. Kang KW, Lee SJ, Park JW, Kim SG (2002) Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol Pharmacol 62(5):1001–1010 doi:10.1124/mol.62.5.1001

    Article  CAS  PubMed  Google Scholar 

  24. Fleurent M, Gingras AC, Sonenberg N, Meloche S (1997) Angiotensin II stimulates phosphorylation of the translational repressor 4E-binding protein 1 by a mitogen-activated protein kinase-independent mechanism. J Biol Chem 272(7):4006–4012 doi:10.1074/jbc.272.7.4006

    Article  CAS  PubMed  Google Scholar 

  25. Martin KA, Blenis J (2002) Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 86:1–39

    Article  CAS  PubMed  Google Scholar 

  26. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234):296–299 doi:10.1126/science.270.5234.296

    Article  CAS  PubMed  Google Scholar 

  27. Ryter SW, Tyrrell RM (1998) Singlet molecular oxygen ((1)O2): a possible effector of eukaryotic gene expression. Free Radic Biol Med 24(9):1520–1534 doi:10.1016/S0891-5849(97)00461-9

    Article  CAS  PubMed  Google Scholar 

  28. Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60(1):6–20 doi:10.1007/s000180300001

    Article  CAS  PubMed  Google Scholar 

  29. Ge Y, Montano I, Rustici G, Freebern WJ, Haggerty CM, Cui W et al (2006) Selective leukemic-cell killing by a novel functional class of thalidomide analogs. Blood 108(13):4126–4135 doi:10.1182/blood-2006-04-017046

    Article  CAS  PubMed  Google Scholar 

  30. Abe T, Gotoh S, Higashi K (1999) Attenuation by glutathione of hsp72 gene expression induced by cadmium in cisplatin-resistant human ovarian cancer cells. Biochem Pharmacol 58(1):69–76 doi:10.1016/S0006-2952(99)00049-0

    Article  CAS  PubMed  Google Scholar 

  31. Roymans D, Slegers H (2001) Phosphatidylinositol 3-kinases in tumor progression. Eur J Biochem 268(3):487–498 doi:10.1046/j.1432-1327.2001.01936.x

    Article  CAS  PubMed  Google Scholar 

  32. Fraser CS, Pain VM, Morley SJ (1999) Cellular stress in xenopus kidney cells enhances the phosphorylation of eukaryotic translation initiation factor (eIF)4E and the association of eIF4F with poly(A)-binding protein. Biochem J 342(3):5119–5126 doi:10.1042/0264-6021:3420519

    Article  Google Scholar 

  33. Park HS, Lee SH, Park D, Lee JS, Ryu SH, Lee WJ et al (2004) Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2. Mol Cell Biol 24(10):4384–4394 doi:10.1128/MCB.24.10.4384-4394.2004

    Article  CAS  PubMed  Google Scholar 

  34. Lee SB, Bae IH, Bae YS, Um HD (2006) Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death. J Biol Chem 281(47):36228–36235 doi:10.1074/jbc.M606702200

    Article  CAS  PubMed  Google Scholar 

  35. Müller I, Niethammer D, Bruchelt G (1998) Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity. Int J Mol Med 1(2):491–494

    PubMed  Google Scholar 

  36. Cleveland JL, Kastan M (2000) A radical approach to treatment. Nature 407(6802):309–311 doi:10.1038/35030277

    Article  CAS  PubMed  Google Scholar 

  37. Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40(6):928–939 doi:10.1016/j.freeradbiomed.2005.10.056

    Article  CAS  PubMed  Google Scholar 

  38. Das UN (2002) A radical approach to cancer. Med Sci Monit 8(6):RA79–RA92

    PubMed  Google Scholar 

  39. Huwiler A, Boddinghaus B, Pautz A, Dorsch S, Franzen R, Briner VA et al (2001) Superoxide potently induces ceramide formation in glomerular endothelial cells. Biochem Biophys Res Commun 284(2):404–410 doi:10.1006/bbrc.2001.4941

    Article  CAS  PubMed  Google Scholar 

  40. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407(6802):390–395 doi:10.1038/35030140

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Fernandez LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, Gonzalez L et al (2002) Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta. Oncogene 21(49):7533–7544 doi:10.1038/sj.onc.1205972

    Article  CAS  PubMed  Google Scholar 

  42. Verrax J, Taper H, Calderon BP (2008) Targeting cancer cells by an oxidant-based therapy. Curr Mol Pharmacol 1:80–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by grants P09879-MED and P12384-MOB from the Austrian Science Fund. We thank Dr. Angelika Burger, Department of Pharmacology and Experimental Therapeutics, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA, for both A2780 cell lines. We also want to thank the National Cancer Institute, Bethesda, MD, for screening the compound in the panel of cell lines.

Conflict of interest statement

Austria Wirtschaftsservice, a governmental organization which files patents for innovations of Austrian universities, obtained a patent on EPH136 and related compounds. The authors J. Hofmann, J. Easmon, G. Puerstinger and G. Heinisch are coassignees of the patent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, J., Easmon, J., Puerstinger, G. et al. N-benzoxazol-2-yl-N′-1-(isoquinolin-3-yl-ethylidene)-hydrazine, a novel compound with antitumor activity, induces radicals and dissipation of mitochondrial membrane potential. Invest New Drugs 27, 189–202 (2009). https://doi.org/10.1007/s10637-008-9156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-008-9156-x

Keywords

Navigation