Skip to main content

Advertisement

Log in

Visual function assessed by visually evoked potentials in optic pathway low-grade gliomas with and without neurofibromatosis type 1

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To investigate the contribution of full-field transient pattern-reversal visually evoked potentials (PRVEP) on cross-sectional evaluations of visual function in patients with and without neurofibromatosis type 1 (NF1) affected by optic pathway low-grade gliomas (OPLGG).

Methods

Participants were children and adolescents referred for visual function evaluation and receiving treatment for OPLGG, linked (NF1-OPLGG) or not to NF1 (Non-NF1-OPLGG). An age-adjusted control group was included for comparison. Monocular full-field PRVEPs were recorded from each eye in accordance with ISCEV standards. Parameters of peak-to-peak P100 amplitude (µV) and P100 peak time (ms) were measured. Cutoff normative values obtained from controls for 15′ and 60′ check sizes were ≥ 9.0 µV for N75-P100 amplitude and ≤ 103.0 ms for P100 peak time. The association of age, gender, tumor resection and NF1 with P100 amplitude reduction and P100 peak time delay was explored by Firth logistic regression modeling.

Results

Participants were 30 patients (15 males, 60% Non-NF1) with ages from 3.6 to 19.9 years (mean ± SD = 9.2 ± 3.8 years; median = 8.4 years) and 19 controls (12 males) with ages from 3.7 to 19.9 years (mean ± SD = 10.4 ± 4.9 years; median = 9.5 years). Overall, 68% of tested eyes presented reduced P100 amplitudes for both check sizes (46% in the NF-1 and 83% in the Non-NF1) and delayed P100 for both check sizes (38% in NF1 and 89% in Non-NF1). Absence of NF1 adjusted for age, gender and tumor resection was significantly associated with marginally reduced P100 amplitude for 15′ checks [odds ratio (OR): 6.26; 95% confidence interval (CI) = 0.96–40.94; p = 0.055].

Conclusions

Full-field PRVEP on cross-sectional evaluations contributed to detect visual dysfunction in two-thirds of patients with OPLGG by highlighting subclinical evidence of visual loss. Abnormalities were more frequent and more severe in OPLGG not linked to NF1 than in NF1-OPLGG; however, there was a difference in surgical management between these groups. PRVEP parameters may provide reliable evidence of visual pathway involvement in OPLGG, helping to hasten treatment before optic atrophy is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tooth HH (1913) Some observations on the growth and survival-period of intracranial tumours, based on the records of 500 cases, with special reference to the pathology of the gliomata. Proc R Soc Med 6:1–48

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Dutton JJ (1994) Gliomas of the anterior visual pathway. Surv Ophthalmol 38:427–452

    Article  PubMed  CAS  Google Scholar 

  3. Brecelj J, Stim-Kranjc B, Skrbec M (2000) Visual electrophysiology in children with tumours affecting the visual pathway. Case reports. Doc Ophthalmol 101:125–15424

    Article  PubMed  CAS  Google Scholar 

  4. Gayre GS, Scott IU, Feuer W, Saunders TG, Siatkowski RM (2001) Long-term visual outcome in patients with anterior visual pathway gliomas. J Neuroophthalmology 21:1–7

    Article  CAS  Google Scholar 

  5. Shofty B, Ben-Sira L, Kesler A, Constantini S (2015) Optic pathway gliomas. Adv Tech Stand Neurosurg 42:123–146. https://doi.org/10.1007/978-3-319-09066-5

    Article  PubMed  Google Scholar 

  6. Chalil A, Ramaswamy V (2016) Low grade gliomas in children. J Child Neurol 31:517–522. https://doi.org/10.1177/0883073815599259

    Article  PubMed  Google Scholar 

  7. Guerreiro Stucklin AS, Tabori U, Grotzer MA (2016) The changing landscape of pediatric low-grade gliomas: clinical challenges and emerging therapies. Neuropediatrics 47:70–83. https://doi.org/10.1055/s-0035-1570491

    Article  PubMed  CAS  Google Scholar 

  8. Warrington NM, Sun T, Luo J, McKinstry RC, Parkin PC, Ganzhorn S, Spoljaric D, Albers AC, Merkelson A, Stewart DR, Stevenson DA, Viskochil D, Druley TE, Forys JT, Reilly KM, Fisher MJ, Tabori U, Allen JC, Schiffman JD, Gutmann DH, Rubin JB (2015) The cyclic AMP pathway is a sex-specific modifier of glioma risk in type I neurofibromatosis patients. Cancer Res 75:16–21. https://doi.org/10.1158/0008-5472.CAN-14-1891

    Article  PubMed  CAS  Google Scholar 

  9. McCullogh DC, Epstein F (1985) Optic pathway tumors: a review with proposals for clinical staging. Cancer 56:1789–1791

    Article  Google Scholar 

  10. Kuenzle Ch, Weissert M, Roulet E, Bode H, Schefer S, Huisman Th, Landau K, Boltshauser E (1994) Follow-up of optic pathway gliomas in children with neurofibromatosis type 1. Neuropediatrics 25:295–300. https://doi.org/10.1055/s-2008-1073043

    Article  PubMed  CAS  Google Scholar 

  11. Suharwardy J, Elston J (1997) The clinical presentation of children with tumors affecting the anterior visual pathways. Eye (Lond) 11:838–884. https://doi.org/10.1038/eye.1997.215

    Article  Google Scholar 

  12. Campagna M, Opocher E, Viscardi E, Calderone M, Severino SM, Cermakova I, Perilongo G (2010) Optic pathway glioma: long-term visual outcome in children without neurofibromatosis type-1. Pediatr Blood Cancer 55:1083–1088. https://doi.org/10.1002/pbc.22748

    Article  PubMed  Google Scholar 

  13. Braddick O, Atkinson J (2011) Development of human visual function. Vis Res 51:1588–1609. https://doi.org/10.1016/j.visres.2011.02.018

    Article  PubMed  Google Scholar 

  14. Salomão SR, Ejzenbaum F, Berezovsky A, Sacai PY, Pereira JM (2001) Age norms for monocular grating acuity measured by sweep-VEP in the first three years of age. Arq Bras Oftalmol 71:475–479. https://doi.org/10.1590/S0004-27492008000400002

    Article  Google Scholar 

  15. Opocher E, Kremer LC, Da Dalt L, van de Wetering MD, Viscardi E, Caron HN, Perilongo G (2006) Prognostic factors for progression of childhood optic pathway glioma: a systematic review. Eur J Cancer 42:1807–1816. https://doi.org/10.1016/j.ejca.2006.02.022

    Article  PubMed  Google Scholar 

  16. Nicolin G, Parkin P, Mabbott D, Hargrave D, Bartels U, Tabori U, Rutka J, Buncic JR, Bouffet E (2009) Natural history and outcome of optic pathway gliomas in children. Pediatr Blood Cancer 53:1231–1237. https://doi.org/10.1002/pbc.22198

    Article  PubMed  Google Scholar 

  17. Cappellano AM, Petrilli AS, da Silva NS, Silva FA, Paiva PM, Cavalheiro S, Bouffet E (2015) Single agent vinorelbine in pediatric patients with progressive optic pathway glioma. J Neurooncol 121:405–412. https://doi.org/10.1007/s11060-014-1652-6

    Article  PubMed  CAS  Google Scholar 

  18. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  19. Khafaga Y, Hassounah M, Kandil A, Kanaan I, Allam A, El Husseiny G, Kofide A, Belal A, Al Shabanah M, Schultz H, Khafaga Jenkin D (2003) Optic gliomas: a retrospective analysis of 50 cases. Int J Radiation Oncology Biol Phys 56:807–812. https://doi.org/10.1016/S0360-3016(02)04512-1

    Article  Google Scholar 

  20. Fried I, Tabori U, Tihan T, Reginald A, Bouffet E (2013) Optic pathway gliomas: a review. CNS Oncol 2:143–159. https://doi.org/10.2217/cns.12.47

    Article  PubMed  CAS  Google Scholar 

  21. Cassiman C, Legius E, Spileers W, Casteels I (2013) Ophthalmological assessment of children with neurofibromatosis type 1. Eur J Pediatr 17:1327–1333. https://doi.org/10.1007/s00431-013-2035-2

    Article  Google Scholar 

  22. Cohen ME, Duffner PK (1983) Visual-evoked responses in children with optic gliomas with and without NF1. Child’s Brain 10:99–111

    PubMed  CAS  Google Scholar 

  23. Lund AM, Skorby F (1991) Optic gliomas in children with neurofibromatosis type 1. Eur J Pediatr 150:835–838

    Article  PubMed  CAS  Google Scholar 

  24. Groswasser Z, Kriss A, Halliday AM, McDonald WI (1985) Pattern- and flash-evoked potentials in the assessment and management of optic nerve gliomas. J Neurol Neurosurg Psychiatry 48:1125–1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jabbari B, Maitland CG, Morris LM, Morales J, Gundeson CH (1985) The value of visual evoked potential as a screening test in neurofibromatosis. Arch Neurol 42:1072–1074

    Article  PubMed  CAS  Google Scholar 

  26. North K, Cochineas C, Tang E, Fagan E (1994) Optic gliomas in neurofibromatosis type 1: role of visual evoked potentials. Pediatr Neurol 10:117–123

    Article  PubMed  CAS  Google Scholar 

  27. Rossi LN, Pastorino G, Scotti G, Gazocchi M, Maninetti MM, Zanolini C, Chiodi A (1994) Early diagnosis of optic glioma in children with neurofibromatosis type I. Child’s Nerv Syst 10:426–429

    Article  CAS  Google Scholar 

  28. Ng YT, North KN (2001) Visual-evoked potentials in the assessment of optic gliomas. Pediatr Neurol 21:44–48

    Article  Google Scholar 

  29. Van Mierlo C, Spileers W, Legius E, Casteels I, Cassiman C (2013) Role of visual evoked potentials in the assessment and management of optic pathway gliomas in children. Doc Ophthalmolol 127:177–190. https://doi.org/10.1007/s10633-013-9399-5

    Article  Google Scholar 

  30. Halliday AM, McDonald WI, Mushin J (1972) Delayed visual evoked response in optic neuritis. Lancet 1:982–985

    Article  PubMed  CAS  Google Scholar 

  31. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DLL, Mizota A, Tormene AP (2016) ISCEV standard for clinical visual evoked potentials (2016 update). Doc Ophthalmol 133:1–9. https://doi.org/10.1007/s10633-016-9553-y

    Article  PubMed  Google Scholar 

  32. Dotto PF, Berezovsky A, Sacai PY, Rocha DM, Salomão SR (2017) Gender-based normative values for pattern-reversal and flash visually evoked potentials under binocular and monocular stimulation in healthy adults. Doc Ophtalmol 135:53–67. https://doi.org/10.1007/s10633-017-9594-x

    Article  Google Scholar 

  33. Wolsey DH, Larson SA, Creel D, Hoffman R (2006) Can screening for optic nerve gliomas in patients with neurofibromatosis type 1 be performed with visually-evoked potential testing? J AAPOS 10:307–311. https://doi.org/10.1016/j.jaapos.2006.02.004

    Article  PubMed  Google Scholar 

  34. Kelly JP, Weiss AH (2006) Comparison of pattern visual-evoked potentials to perimetry in the detection of visual loss in children with optic pathway gliomas. J AAPOS 10:298–306. https://doi.org/10.1016/j.jaapos.2006.02.003

    Article  PubMed  Google Scholar 

  35. Wenzel D, Brandl U, Beck JD, Cedzich C, Albert F (1988) Visual evoked potentials in tumors from orbita to occipital lobe in childhood. Neurosurg Rev 11:279–286

    Article  PubMed  CAS  Google Scholar 

  36. Brecelj J (2014) Visual electrophysiology in the clinical evaluation of optic neuritis, chiasmal tumours, achiasmia, and ocular albinism: an overview. Doc Ophthalmol 129:71–84. https://doi.org/10.1007/s10633-014-9448-8

    Article  PubMed  Google Scholar 

  37. Trick GL (2003) Beyond visual acuity: new and complementary tests of visual function. Neurol Clin 21:363–386

    Article  PubMed  Google Scholar 

  38. Holladay JT (2004) Visual acuity measurements. J Cataract Refract Surg 30:287–290

    Article  PubMed  Google Scholar 

  39. StataCorp (2015) Stata statistical software: Release 14. StataCorp LLC, College Station

    Google Scholar 

  40. Wang X (2014) Firth logistic regression for rare variant association tests. Front Genet 5:187. https://doi.org/10.3389/fgene.2014.00187

    Article  PubMed  PubMed Central  Google Scholar 

  41. Magli A, Forte R, Cinalli G, Esposito F, Parisi S, Capasso M, Papparella A (2013) Functional changes after treatment of optic pathway paediatric low-grade gliomas. Eye (Lond) 27:1288–1292. https://doi.org/10.1038/eye.2013.186

    Article  CAS  Google Scholar 

  42. Halliday AM, Halliday E, Kriss A, McDonald W, Mushin J (1976) The pattern-evoked potential of the anterior visual pathway. Brain 99:357–374

    Article  PubMed  CAS  Google Scholar 

  43. Shaw FS, Kriss A, Russel-Eggitt I, Taylor D, Harris C (2001) Diagnosing children presenting with asymmetric pendular nystagmus. Dec Med Chil Neurol 43:622–627

    Article  CAS  Google Scholar 

  44. Iannaccone A, McCluney RA, Brewer VR, Spiegel PH, Taylor JS, Kerr NC, Pivnick EK (2002) Visual evoked potentials in children with neurofibromamatosis type 1. Doc Ophthalmol 10:63–81

    Article  Google Scholar 

  45. Yerdelen D, Koc F, Durdu M, Karakas M (2011) Electrophysiological findings in neurofibromatosis type 1. J Neurol Sci 306:42–48. https://doi.org/10.1016/j.jns.2011.03.048

    Article  PubMed  Google Scholar 

  46. Ammendola A, Ciccone G, Ammendola E (2006) Utility of multimodal evoked potentials study in neurofibromatosis type 1 of childhood. Pediatr Neurol 34:276–280

    Article  PubMed  Google Scholar 

  47. Alshail E, Rutka JT, Becker LE, Hoffman HJ (1997) Optic chiasmatic-hypothalamic glioma. Brain Pathol 7:799–806

    Article  PubMed  CAS  Google Scholar 

  48. Blanchard G, Lafforgue MP, Lion-François L, Kemlin I, Rodriguez D, Castenau P, Carneiro M, Meyer P, Rivier F, Barbarot S, Chaix Y (2016) Systematic MRI in NF1 children under six years of age for the diagnosis of optic pathway gliomas Study and outcome of a French cohort. Eur J Paediatr Neurol 20:275–281. https://doi.org/10.1016/j.ejpn.2015.12.002

    Article  PubMed  Google Scholar 

  49. Kelly JP, Leary S, Khanna P, Weiss AH (2012) Longitudinal measures of visual function tumor volume and prediction of visual outcomes after treatment of optic pathway gliomas. Ophthalmology 119:1231–1237. https://doi.org/10.1016/j.ophtha.2011.12.035

    Article  PubMed  Google Scholar 

  50. Trisciuzzi MTS, Riccardo R, Piccardi M, Iarossi G, Buzzonetti L, Dickmann A, Colosimo C Jr, Ruggiero A, Di Rocco C, Falsini B (2004) A fast visual evoked potential method for functional assessment and follow-up of childhood optic gliomas. Clin Neurophysiol 115:217–226

    Article  PubMed  Google Scholar 

  51. Listernick R et al (2007) Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198. https://doi.org/10.1002/ana.21107

    Article  PubMed  CAS  Google Scholar 

  52. Siatkowski RM (2006) VEP testing and visual pathway gliomas: not quite ready for prime time. J AAPOS 10:293–295. https://doi.org/10.1016/j.jaapos.2006.06.002

    Article  PubMed  Google Scholar 

  53. Parsa CF (2012) Why visual function does not correlate with optic glioma size or growth. Arch Ophthalmol 130:521–522. https://doi.org/10.1001/archophthalmol.2011.1432

    Article  PubMed  Google Scholar 

  54. Caen S, Legius E, Casteels I (2015) Comparative study of the ophthalmological examinations in neurofibromatosis type 1. Proposal for a new screening algorithm. Eur J Paed Neurol 19:415–422. https://doi.org/10.1016/j.ejpn.2015.03.002

    Article  CAS  Google Scholar 

  55. Hoffman HJ, Humphreys RP, Drake JM, Rutka JT, Becker LE, Jenkin D, Greenberg M (1993) Optic pathway/hypothalamic gliomas: a dilemma in management. Pediatr Neurosurg 19:186–195

    Article  PubMed  CAS  Google Scholar 

  56. Müler-Jensen A, Zschocke S, Dannheim F (1981) VER analysis of the chiasmal syndrome. J Neurol 225:33–40

    Article  Google Scholar 

  57. Crevits L, van Lith GH (1983) Component analysis of pattern evoked occipital potentials in hemianopic patients. Doc Ophthalmol 55:295–305

    Article  PubMed  CAS  Google Scholar 

  58. Towle VL, Brigell M, Spire JP (1989) Hemi-field pattern visual evoked potentials: a comparison of display and analysis techniques. Brain Topogr 1:263–270

    Article  PubMed  CAS  Google Scholar 

  59. Brecelj J, Denislic M, Skrbec M (1989) Visual evoked potential abnormalities in chiasmal lesions. Doc Ophthalmol 73:139–148

    Article  PubMed  CAS  Google Scholar 

  60. Brecelj J (1992) A VEP study of the visual pathway function in compressive lesions of the optic chiasm. Full-field versus half-field stimulation. Electroenceph Clin Neurophys 84:209–218

    Article  CAS  Google Scholar 

  61. Brecelj J (1994) Electrodiagnostics of chiasmal compressive lesions. Int J Psychophysiol 16:263–272

    Article  PubMed  CAS  Google Scholar 

  62. Acheson J (2000) Optic nerve and chiasm disease. J Neurol 247:587–596

    Article  PubMed  CAS  Google Scholar 

  63. Nehamkin S, Windim M, Syed TU (2008) Visual evoked potentials. Am J Electroneurodiagnostic Technol 48:233–248

    Article  PubMed  Google Scholar 

  64. Mellow TB, Liasis A, Lyons R, Thompson D (2011) When do asymmetrical full-field pattern reversal visual evoked potentials indicate visual pathway dysfunction in children? Doc Ophthalmol 122:9–18. https://doi.org/10.1007/s10633-010-9250-1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange Rios Salomão.

Ethics declarations

Conflict of interest

The authors declare that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all parents/guardians of individuals participants in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotto, P.F., Berezovsky, A., Cappellano, A.M. et al. Visual function assessed by visually evoked potentials in optic pathway low-grade gliomas with and without neurofibromatosis type 1. Doc Ophthalmol 136, 177–189 (2018). https://doi.org/10.1007/s10633-018-9635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-018-9635-0

Keywords

Navigation