Skip to main content

Advertisement

Log in

Evaluation of structural and functional changes in non-pathologic myopic fundus using multifocal electroretinogram and optical coherence tomography

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To evaluate structural and functional changes in non-pathologic myopic fundus using multifocal electroretinogram (mfERG) and spectral domain-optical coherence tomography (SD-OCT).

Methods

A total of 90 myopic subjects underwent mfERG and SD-OCT. The subjects were divided into four groups according to spherical equivalent refractive error: Group 1 (−0.50 to −2.75 D), Group 2 (−3.00 to −5.75 D), Group 3 (−6.00 to −9.75 D), and Group 4 (−10.0 to −15.0 D). Total retinal thickness, photoreceptor retinal thickness (PR), outer nuclear retinal thickness and mid-inner retinal thickness (MIR) were measured using SD-OCT in foveola and two perifoveal retinal regions 2.0 mm nasal and temporal from the foveola. The amplitude and implicit time of N1 and P1 mfERG responses were analyzed using six-concentric-ring grouping. Correlations between each retinal thickness, amplitude, and implicit time among the four myopic groups were analyzed.

Results

PR thickness in the foveola and MIR thickness in the perifoveal retina were significantly reduced with increasing myopic refractive errors (p = 0.001, respectively). Significant correlations appeared between N1 amplitude, P1 amplitude, P1 implicit time, and refractive errors (p = 0.001, respectively). Significant correlations appeared between MIR thickness and N1, P1 amplitude (p = 0.001, respectively) as well as N1, P1 implicit time (p = 0.02 and 0.03, respectively) in the perifoveal retina corresponding to ring 4.

Conclusions

The correlation between structural and functional changes in myopia should be considered when interpreting retinal structure and function using SD-OCT and mfERG, especially in high myopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Katz J, Tielsch JM, Sommer A (1997) Prevalence and risk factors for refractive errors in an adult inner city population. Invest Ophthalmol Vis Sci 38:334–340

    PubMed  CAS  Google Scholar 

  2. Wang Q, Klein BE, Klein R, Moss SE (1994) Refractive status in the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 35:4344–4347

    PubMed  CAS  Google Scholar 

  3. Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, Johnson GJ, Seah SK (2000) Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci 41:2486–2494

    PubMed  CAS  Google Scholar 

  4. Luu CD, Lau AM, Lee SY (2006) Multifocal electroretinogram in adults and children with myopia. Arch Ophthalmol 124:328–334

    Article  PubMed  Google Scholar 

  5. Pierro L, Camesasca FI, Mischi M, Brancato R (1992) Peripheral retinal changes and axial myopia. Retina 12:12–17

    Article  PubMed  CAS  Google Scholar 

  6. Grossniklaus HE, Green WR (1992) Pathologic findings in pathologic myopia. Retina 12:127–133

    Article  PubMed  CAS  Google Scholar 

  7. Gözüm N, Cakir M, Gücukoglu A, Sezen F (1997) Relationship between retinal lesions and axial length, age and sex in high myopia. Eur J Ophthalmol 7:277–282

    PubMed  Google Scholar 

  8. Saw SM, Gazzard G, Shin-Yen EC, Chua WH (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt 25:381–391

    Article  PubMed  Google Scholar 

  9. Lim MC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SK, Aung T (2005) Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 46:974–978

    Article  PubMed  Google Scholar 

  10. Lam DS, Leung KS, Mohamed S, Chan WM, Palanivelu MS, Cheung CY, Li EY, Lai RY, Leung CK (2007) Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci 48:376–382

    Article  PubMed  Google Scholar 

  11. Wu PC, Chen YJ, Chen CH, Chen YH, Shin SJ, Yang HJ, Kuo HK (2008) Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye 22:551–555

    Article  PubMed  Google Scholar 

  12. Perlman I, Meyer E, Haim T, Zonis S (1984) Retinal function in high refractive error assessed electroretinographically. Br J Ophthalmol 68:79–84

    Article  PubMed  CAS  Google Scholar 

  13. Westall CA, Dhaliwal HS, Panton CM, Sigesmun D, Levin AV, Nischal KK, Héon E (2001) Values of electroretinogram responses according to axial length. Doc Ophthalmol 102:115–130

    Article  PubMed  CAS  Google Scholar 

  14. Chen JC, Brown B, Schmid KL (2006) Delayed mfERG responses in myopia. Vision Res 46:1221–1229

    Article  PubMed  Google Scholar 

  15. Kawabata H, Adachi-Usami E (1997) Multifocal electroretinogram in myopia. Invest Ophthalmol Vis Sci 38:2844–2851

    PubMed  CAS  Google Scholar 

  16. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116:1–11

    Article  PubMed  Google Scholar 

  17. Pederesen KB, Møller F, Sjølie AK, Andréasson S (2010) Electrophysiological assessment of retinal function during 6 months of bevacizumab treatment in neovascular age-related macular degeneration. Retina 30:1025–1033

    Article  Google Scholar 

  18. Xie R, Zhou XT, Lu F, Chen M, Xue A, Chen S, Qu J (2009) Correlation between myopia and major biometric parameters of the eye: a retrospective clinical study. Optom Vis Sci 86:E503–E508

    Article  PubMed  Google Scholar 

  19. Hood DC, Odel JG, Chen CS, Winn BJ (2003) The multifocal electroretinogram. J Neuroophthalmol 23:225–235

    Article  PubMed  Google Scholar 

  20. Faghihi H, Hajizadeh F, Riazi-Esfahani M (2010) Optical coherence tomographic findings in highly myopic eyes. J Ophthalmic Vis Res 5:110–121

    PubMed  Google Scholar 

  21. Wolsley CJ, Saunders KJ, Silvestri G, Anderson RS (2008) Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity. Vision Res 48:1554–1561

    Article  PubMed  Google Scholar 

  22. Cheng SC, Lam CS, Yap MK (2010) Retinal thickness in myopic and non-myopic eyes. Ophthal Physiol Opt 30:776–784

    Article  Google Scholar 

  23. Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 23:177–182

    Article  PubMed  Google Scholar 

  24. Żejmo M, Formińska-Kapuścik M, Pieczara E, Filipek E, Mrukwa-Kominek E, Samochowiec-Donocik E, Leszczyński R, Smużyńska M (2009) Etiopathogenesis and management of high-degree myopia. Part I. Med Sci Monit 15:199–202

    Google Scholar 

  25. Li KY, Tiruveedhula P, Roorda A (2010) Intersubject variability of foveal cone photoreceptor density in relation to eye length. Invest Ophthalmol Vis Sci 51:6858–6867

    Article  PubMed  Google Scholar 

  26. Chan HL, Mohidin N (2003) Variation of multifocal electroretinogram with axial length. Ophthal Physiol Opt 23:133–140

    Article  CAS  Google Scholar 

  27. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685

    PubMed  Google Scholar 

  28. Sato A, Fukui E, Ohta K (2010) Retinal thickness of myopic eyes determined by spectralis optical coherence tomography. Br J Ophthalmol 94:1624–1628

    Article  PubMed  Google Scholar 

  29. Forte R, Cennamo GL, Finelli ML, de Crecchio G (2009) Comparison of time domain stratus OCT and spectral domain SLO/OCT for assessment of macular thickness and volume. Eye 23:2071–2078

    Article  PubMed  CAS  Google Scholar 

  30. Song WK, Lee SC, Lee ES, Kim CY, Kim SS (2010) Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci 51:3913–3918

    Article  PubMed  Google Scholar 

  31. Rao HL, Kumar AU, Babu JG, Kumar A, Senthil S, Garudadri CS (2011) Predictors of normal optic nerve head, retinal nerve fiber layer, and macular parameters measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1103–1110

    Article  PubMed  Google Scholar 

  32. Huang J, Liu X, Wu Z, Xiao H, Dustin L, Sadda S (2009) Macular thickness measurements in normal eyes with time domain and fourier domain optical coherence tomography. Retina 29:980–987

    Article  PubMed  Google Scholar 

  33. Grover S, Murthy R, Brar VS, Chalam KV (2009) Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (Spectralis). Am J Ophthalmol 148:266–271

    Article  PubMed  Google Scholar 

  34. Seiple W, Vajaranant TS, Szlyk JP, Clemens C, Holopigian K, Pliga J, Bdawi D, Carr RE (2003) Multifocal electroretinography as a function of age: the importance of normative values for old adults. Invest Ophthalmol Vis Sci 44:1783–1792

    Article  PubMed  Google Scholar 

  35. Gerth C, Garcia SM, Ma L, Keltner JL, Werner JS (2002) Multifocal electroretinogram: age-related changes for different luminance levels. Graefes Arch Clin Exp Ophthalmol 240:202–208

    Article  PubMed  Google Scholar 

  36. Nabeshima T, Tazawa Y, Mita M, Sano M (2002) Effects of aging on the first and second-order kernels of multifocal electroretinogram. Jpn J Ophthalmol 46:261–269

    Article  PubMed  Google Scholar 

  37. Langrová H, Zrenner E, Kurtenbach A, Seeliger MW (2008) Age-related changes in retinal functional topography. Invest Ophthalmol Vis Sci 49:5024–5032

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hoon Ohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Kim, S.H., Park, T.K. et al. Evaluation of structural and functional changes in non-pathologic myopic fundus using multifocal electroretinogram and optical coherence tomography. Doc Ophthalmol 126, 199–210 (2013). https://doi.org/10.1007/s10633-013-9375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-013-9375-0

Keywords

Navigation